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HOW TO USE THIS BOOK

Ĳ Introduction

First of all, welcome back to Calculus!

This book is an early draft of a companion question book for the CLP-4 text. Additional
questions are still under active development.

§§ How to Work Questions

This book is organized into four sections: Questions, Hints, Answers, and Solutions. As
you are working problems, resist the temptation to prematurely peek at the back! It’s
important to allow yourself to struggle for a time with the material. Even professional
mathematicians don’t always know right away how to solve a problem. The art is in
gathering your thoughts and figuring out a strategy to use what you know to find out
what you don’t.

If you find yourself at a real impasse, go ahead and look for a hint in the Hints section.
Think about it for a while, and don’t be afraid to read back in the notes to look for a key
idea that will help you proceed. If you still can’t solve the problem, well, we included the
Solutions section for a reason! As you’re reading the solutions, try hard to understand
why we took the steps we did, instead of memorizing step-by-step how to solve that one
particular problem.

If you struggled with a question quite a lot, it’s probably a good idea to return to it in a few
days. That might have been enough time for you to internalize the necessary ideas, and
you might find it easily conquerable. Pat yourself on the back-sometimes math makes you
feel good! If you’re still having troubles, read over the solution again, with an emphasis
on understanding why each step makes sense.

One of the reasons so many students are required to study calculus is the hope that it will
improve their problem-solving skills. In this class, you will learn lots of concepts, and
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HOW TO USE THIS BOOK

be asked to apply them in a variety of situations. Often, this will involve answering one
really big problem by breaking it up into manageable chunks, solving those chunks, then
putting the pieces back together. When you see a particularly long question, remain calm
and look for a way to break it into pieces you can handle.

§§ Working with Friends

Study buddies are fantastic! If you don’t already have friends in your class, you can ask
your neighbours in lecture to form a group. Often, a question that you might bang your
head against for an hour can be easily cleared up by a friend who sees what you’ve missed.
Regular study times make sure you don’t procrastinate too much, and friends help you
maintain a positive attitude when you might otherwise succumb to frustration. Struggle
in mathematics is desirable, but suffering is not.

When working in a group, make sure you try out problems on your own before coming
together to discuss with others. Learning is a process, and getting answers to questions
that you haven’t considered on your own can rob you of the practice you need to master
skills and concepts, and the tenacity you need to develop to become a competent problem-
solver.

§§ Types of Questions

Q[1](˚): In addition to original problems, this book contains problems pulled from quizzes
and exams given at UBC for Math 317 (Calculus 4). These problems are marked with a
star. The authors would like to acknowledge the contributions of the many people who
collaborated to produce these exams over the years.

The questions are organized into Stage 1, Stage 2, and Stage 3.

§§ Stage 1

The first category is meant to test and improve your understanding of basic underlying
concepts. These often do not involve much calculation. They range in difficulty from
very basic reviews of definitions to questions that require you to be thoughtful about the
concepts covered in the section.

§§ Stage 2

Questions in this category are for practicing skills. It’s not enough to understand the philo-
sophical grounding of an idea: you have to be able to apply it in appropriate situations.
This takes practice!
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§§ Stage 3

The last questions in each section go a little farther than Stage 2. Often they will combine
more than one idea, incorporate review material, or ask you to apply your understanding
of a concept to a new situation.

In exams, as in life, you will encounter questions of varying difficulty. A good skill to
practice is recognizing the level of difficulty a problem poses. Exams will have some easy
questions, some standard questions, and some harder questions.

iii



CONTENTS

How to use this book i

I The questions 1

1 Curves 2
1.1 Derivatives, Velocity, Etc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Reparametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Curves in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Integrating Along a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Sliding on a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Vector Fields 25
2.1 Definitions and First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Field Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Conservative Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Line Integals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Surface Integrals 42
3.1 Parametrized Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Tangent Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Integral Theorems 55
4.1 Gradient, Divergence and Curl . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Stokes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 True/False and Other Short Questions 82

iv



CONTENTS CONTENTS

II Hints to problems 96
1.1 Derivatives, Velocity, Etc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1.2 Reparametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
1.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
1.4 Curves in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
1.6 Integrating Along a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
1.7 Sliding on a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
1.8 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.1 Definitions and First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.2 Field Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.3 Conservative Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.4 Line Integals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.1 Parametrized Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.2 Tangent Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.1 Gradient, Divergence and Curl . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4 Stokes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5 True/False and Other Short Questions . . . . . . . . . . . . . . . . . . . . . . 114

III Answers to problems 117
1.1 Derivatives, Velocity, Etc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1.2 Reparametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.4 Curves in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.6 Integrating Along a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.7 Sliding on a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.8 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.1 Definitions and First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 127
2.2 Field Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.3 Conservative Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.4 Line Integals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.1 Parametrized Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.2 Tangent Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.3 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.1 Gradient, Divergence and Curl . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.3 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.4 Stokes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5 True/False and Other Short Questions . . . . . . . . . . . . . . . . . . . . . . 144

IV Solutions to problems 146
1.1 Derivatives, Velocity, Etc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
1.2 Reparametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

v



CONTENTS CONTENTS

1.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
1.4 Curves in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
1.6 Integrating Along a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
1.7 Sliding on a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
1.8 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
2.1 Definitions and First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 215
2.2 Field Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
2.3 Conservative Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
2.4 Line Integals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3.1 Parametrized Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3.2 Tangent Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
3.3 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
4.1 Gradient, Divergence and Curl . . . . . . . . . . . . . . . . . . . . . . . . . . 322
4.2 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.3 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
4.4 Stokes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
5 True/False and Other Short Questions . . . . . . . . . . . . . . . . . . . . . . 445

vi



THE QUESTIONS

Part I

1



CURVES

Chapter 1

1.1Ĳ Derivatives, Velocity, Etc.

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Questions 1 through 5 provide practice with curve parametrization. Being comfortable with the algebra and
interpretation of these descriptions are essential ingredients in working effectively with parametrizations.

Q[1]: Find the specified parametrization of the first quadrant part of the circle
x2 + y2 = a2.

(a) In terms of the y coordinate.

(b) In terms of the angle between the tangent line and the positive x-axis.

(c) In terms of the arc length from (0, a).

Q[2]: Consider the following time-parametrized curve:

r(t) =
(

cos
(π

4
t
)

, (t´ 5)2
)

List the three points (´1/
?

2, 0), (1, 25), and (0, 25) in chronological order.

Q[3]: At what points in the xy-plane does the curve (sin t, t2) cross itself? What is the
difference in t between the first time the curve crosses through a point, and the last?

Q[4]:

2



CURVES 1.1 DERIVATIVES, VELOCITY, ETC.

x

y

a

a

P

A circle of radius a rolls along the x-axis in the positive direction, starting with its centre
at (a, a). In that position, we mark the topmost point on the circle P. As the circle moves,
P moves with it. Let θ be the angle the circle has rolled — see the diagram below.

(a) Give the position of the centre of the circle as a function of θ.

(b) Give the position of P as a function of θ.

Pθ

Q[5]: The curve C is defined to be the intersection of the ellipsoid

x2 ´ 1
4

y2 + 3z2 = 1

and the plane
x + y + z = 0.

When y is very close to 0, and z is negative, find an expression giving z in terms of y.

Q[6]: A particle traces out a curve in space, so that its position at time t is

r(t) = e´t ı̂ıı +
1
t

̂ + (t´ 1)2(t´ 3)2 k̂

for t ą 0.

Let the positive z axis point vertically upwards, as usual. When is the particle moving
upwards, and when is it moving downwards? Is it moving faster at time t = 1 or at time
t = 3?

Q[7]: Below is the graph of the parametrized function r(t). Let s(t) be the arclength along
the curve from r(0) to r(t).

3



CURVES 1.1 DERIVATIVES, VELOCITY, ETC.

r(t + h)

r(t)

r(0)

Indicate on the graph s(t + h)´ s(t) and r(t + h)´ r(t). Are the quantities scalars or
vectors?

Q[8]: What is the relationship between velocity and speed in a vector-valued function of
time?

Q[9](˚): Let r(t) be a vector valued function. Let r1, r2 , and r3 denote dr
dt , d2r

dt2 and d3r
dt3 ,

respectively. Express
d
dt
[
(rˆ r1) ¨ r2]

in terms of r, r1 , r2 , and r3. Select the correct answer.

(a) (r1 ˆ r2) ¨ r3
(b) (r1 ˆ r2) ¨ r + (rˆ r1) ¨ r3
(c) (rˆ r1) ¨ r3
(d) 0

(e) None of the above.

Q[10]: Show that, if the position and velocity vectors of a moving particle are always
perpendicular, then the path of the particle lies on a sphere.

§§ Stage 2

Q[11](˚): Find the speed of a particle with the given position function

r(t) = 5
?

2 t ı̂ıı + e5t ̂´ e´5t k̂

Select the correct answer:

(a) |v(t)| = (e5t + e´5t)

(b) |v(t)| = ?
10 + 5et + 5e´t

(c) |v(t)| = ?
10 + e10t + e´10t

(d) |v(t)| = 5
(
e5t + e´5t)

4



CURVES 1.1 DERIVATIVES, VELOCITY, ETC.

(e) |v(t)| = 5
(
et + e´t)

Q[12]: Find the velocity, speed and acceleration at time t of the particle whose position is

r(t) = a cos t ı̂ıı + a sin t ̂ + ct k̂

Describe the path of the particle.

Q[13](˚):
(a) Let

r(t) =
(

t2, 3, 1
3 t3
)

Find the unit tangent vector to this parametrized curve at t = 1, pointing in the
direction of increasing t.

(b) Find the arc length of the curve from (a) between the points (0, 3, 0) and (1, 3,´1
3).

Q[14]: Using Lemma 1.1.3 in the CLP-4 text, find the arclength of r(t) =
(

t,
b

3
2 t2, t3

)
from

t = 0 to t = 1.

Q[15]: Find the length of the parametric curve

x = a cos t sin t y = a sin2 t z = bt

between t = 0 and t = T ą 0.

Q[16]: A particle’s position at time t is given by r(t) = (t + sin t, cos t)1. What is the
magnitude of the acceleration of the particle at time t?

Q[17](˚): A curve in R3 is given by the vector equation r(t) =
(

2t cos t, 2t sin t, t3

3

)

(a) Find the length of the curve between t = 0 and t = 2.

(b) Find the parametric equations of the tangent line to the curve at t = π.

Q[18](˚): Let r(t) =
(
3 cos t, 3 sin t, 4t

)
be the position vector of a particle as a function of

time t ě 0.

(a) Find the velocity of the particle as a function of time t.

(b) Find the arclength of its path between t = 1 and t = 2.

Q[19]: The plane z = 2x + 3y intersects the cylinder x2 + y2 = 9 in an ellipse.

(a) Find a parametrization of the ellipse.

(b) Express the circumference of this ellipse as an integral. You need not evaluate the
integral2.

1 The particle traces out a cycloid — see Question 4
2 The indefinite integral involved is one of a class of integrals called elliptic integrals because of their

connections to arc lengths of ellipses. In general, elliptic integrals cannot be expressed in terms of
elementary functions. You can easily find discussions of elliptic integrals using your favourite search
engine.
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CURVES 1.1 DERIVATIVES, VELOCITY, ETC.

Q[20](˚): Consider the curve

r(t) =
1
3

cos3 t ı̂ıı +
1
3

sin3 t ̂ + sin3 t k̂

(a) Compute the arc length of the curve from t = 0 to t = π
2 .

(b) Compute the arc length of the curve from t = 0 to t = π.

Q[21](˚): Let r(t) =
(1

3 t3, 1
2 t2, 1

2 t
)
, t ě 0. Compute s(t), the arclength of the curve at time t.

Q[22](˚): Find the arc length of the curve r(t) =
(
tm , tm , t3m/2) for 0 ď a ď t ď b, and

where m ą 0. Express your result in terms of m, a, and b.

Q[23]: Let C be the part of the curve of intersection of the parabolic cylinder x = y2 and
the hyperbolic paraboloid 3z = 2xy with y ě 0.

(a) Write a vector parametric equation for C using x as the parameter.

(b) Find the length of the part of C between the origin and the point (9, 3, 18).

(c) A particle moves along C in the direction for which x is increasing. If the particle
moves with constant speed 9, find its velocity vector when it is at the point (1, 1, 2

3).

(d) Find the acceleration vector of the particle of part (c) when it is at the point (1, 1, 2
3).

Q[24]: If a particle has constant mass m, position r, and is moving with velocity v, then
its angular momentum is L = m(rˆ v).

For a particle with mass m = 1 and position function r = (sin t, cos t, t), find
ˇ

ˇ

ˇ

dL
dt

ˇ

ˇ

ˇ
.

§§ Stage 3

Q[25](˚): A particle moves along the curve C of intersection of the surfaces z2 = 12y and
18x = yz in the upward direction. When the particle is at (1, 3, 6) its velocity v and
acceleration a are given by

v = 6 ı̂ıı + 12 ̂ + 12 k̂ a = 27 ı̂ıı + 30 ̂ + 6 k̂

(a) Write a vector parametric equation for C using u = z
6 as a parameter.

(b) Find the length of C from (0, 0, 0) to (1, 3, 6).

(c) If u = u(t) is the parameter value for the particle’s position at time t, find du
dt when

the particle is at (1, 3, 6).

(d) Find d2u
dt2 when the particle is at (1, 3, 6).

Q[26](˚): A particle of mass m = 1 has position r0 = 1
2 k̂ and velocity v0 = π2

2 ı̂ıı at time 0.
It moves under a force

F(t) = ´3t ı̂ıı + sin t ̂ + 2e2t k̂.

(a) Determine the position r(t) of the particle depending on t.

6



CURVES 1.2 REPARAMETRIZATION

(b) At what time after time t = 0 does the particle cross the plane x = 0 for the first time?

(c) What is the velocity of the particle when it crosses the plane x = 0 in part (b)?

Q[27](˚): Let C be the curve of intersection of the surfaces y = x2 and z = 2
3 x3. A particle

moves along C with constant speed such that dx
dt ą 0. The particle is at (0, 0, 0) at time

t = 0 and is at (3, 9, 18) at time t = 7
2 .

(a) Find the length of the part of C between (0, 0, 0) and (3, 9, 18).

(b) Find the constant speed of the particle.

(c) Find the velocity of the particle when it is at
(
1, 1, 2

3

)
.

(d) Find the acceleration of the particle when it is at
(
1, 1, 2

3

)
.

Q[28]: A camera mounted to a pole can swivel around in a full circle. It is tracking an
object whose position at time t seconds is x(t) metres east of the pole, and y(t) metres
north of the pole.

In order to always be pointing directly at the object, how fast should the camera be pro-
grammed to rotate at time t? (Give your answer in terms of x(t) and y(t) and their deriva-
tives, in the units rad/sec.)

Q[29]: A pipe of radius 3 follows the path of the curve r(t) = (2
?

2
3 t3/2 , 1

2 t2 , t + 2), for
0 ď t ď 10.

What is the volume inside the pipe? What is the surface area of the pipe?

Q[30]: A wire of total length 1000cm is formed into a flexible coil that is a circular helix. If
there are 10 turns to each centimetre of height and the radius of the helix is 3 cm, how tall
is the coil?

Q[31]: A projectile falling under the influence of gravity and slowed by air resistance
proportional to its speed has position satisfying

d2r
dt2 = ´gk̂´ α

dr
dt

where α is a positive constant. If r = r0 and dr
dt = v0 at time t = 0, find r(t).

1.2Ĳ Reparametrization

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: A curve r(s) is parametrized in terms of arclength. What is
ż t

1
|r1(s)|ds when t ě 1?

7



CURVES 1.2 REPARAMETRIZATION

Q[2]: The function

r(s) = sin
(

s + 1
2

)
ı̂ıı + cos

(
s + 1

2

)
̂ +

?
3

2
(s + 1)k̂

is parametrized in terms of arclength, starting from the point P. What is P?

Q[3]: A curve R = a(t) is reparametrized in terms of arclength as R = b(s) = a(t(s)). Of
the following options, which best describes the relationship between the vectors a1(t0)
and b1(s0), where t(s0) = t0?

You may assume a1(t) and b1(s) exist and are nonzero for all t, s ě 0.

A. they are parallel and point in the same direction

B. they are parallel and point in opposite directions

C. they are perpendicular

D. they have the same magnitude

E. they are equal

§§ Stage 2

Q[4](˚):
(a) Let

r(t) = (2 sin3 t, 2 cos3 t, 3 sin t cos t)

Find the unit tangent vector to this parametrized curve at t = π/3, pointing in the
direction of increasing t.

(b) Reparametrize the vector function r(t) from (a) with respect to arc length measured
from the point t = 0 in the direction of increasing t.

Q[5](˚): This problem is about the logarithmic spiral in the plane

r(t) = et(cos t, sin t), t P R

(a) Find the arc length of the piece of this spiral which is contained in the unit circle.

(b) Reparametrize the logarithmic spiral with respect to arc length, measured from
t = ´8.

§§ Stage 3

Q[6]: Define

r(t) =
(

1?
1 + t2

,
arctan t?
1 + t´2

, arctan t
)

for 0 ď t. Reparametrize the function using z = arctan t, and describe the curve it defines.
What is the geometric interpretation of the new parameter z?

Q[7]: Reparametrize the function r(t) = (1
2 t2, 1

3 t3) in terms of arclength from t = ´1.

8



CURVES 1.3 CURVATURE

1.3Ĳ Curvature

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

There are a lot of constants in this chapter that might be new to you. They can take a little getting used
to. Questions 1-5 provide practice working with and interpreting these constants and their relations to each
other.

Q[1]: Sketch the curve r(t) = (3 sin t, 3 cos t). At the point (0, 3), label T̂ and N̂. Give the
values of κ and ρ at this point as well.

Q[2]: Consider the circle r(t) = (3 sin t, 3 cos t). Find T̂(t) and T̂(s). Then, use parts (b)
and (c) of Theorem 1.3.3 to find N̂(t) and N̂(s).

Q[3]: The functon r(t) = (t cos t, t sin t), t ě 0, defines a spiral centred at the origin. Using
only geometric intuition (no calculation), predict lim

tÑ8
κ(t).

Q[4]: Let r(t) = (et, 3t, sin t). What is ds
dt ?

Q[5]: In Question 5 of Section 1.2,we found that the spiral

r(t) = et(cos t, sin t)

parametrized in terms of arclength is

R(s) =
s?
2

(
cos

(
ln
( s?

2

))
, sin

(
ln
( s?

2

)))
.

Find dT̂
ds and dT̂

dt for this curve.

Q[6]: In this exercise, we make more precise the sense in which the osculating circle is the
circle which best approximates a plane curve at a point.

• By translating and rotating our coordinate system, we can always arrange that the
point is (0, 0) and that the curve is y = f (x) with f 1(0) = 0 and f 2(0) ą 0. (We are
assuming that the curvature at the point is nonzero.)
• Let y = g(x) be the bottom half of the circle of radius r which is centred at (0, r).

Show that if f (x) and g(x) have the same second order Taylor approximation at x = 0,
then r is the radius of curvature of y = f (x) at x = 0.

§§ Stage 2

Q[7]: Given a curve r(t) = (et, t2 + t), compute the following quantities:

9



CURVES 1.3 CURVATURE

A. v(t)

B. a(t)

C. ds
dt

D. T̂(t)

E. κ(t)

Q[8]: Find the curvature κ(t) of r(t) = (cos t + sin t, sin t´ cos t).

Q[9]: Find the minimum and maximum values for the curvature of the ellipse x(t) =
a cos t, y(t) = b sin t. Here a ą b ą 0.

Q[10](˚):
(a) Find the curvature of y = ex at (0, 1).

(b) Find the equation of the circle best fitting y = ex at (0, 1).

Q[11](˚):
Consider the motion of a thumbtack stuck in the tread of a tire which is on a bicycle
moving at constant speed. This motion is given by the parametrized curve

r(t) =
(
t´ sin t , 1´ cos t

)

with t ą 0.

(a) Sketch the curve in the xy-plane for 0 ă t ă 4π.

(b) Find and simplify the formula for the curvature κ(t).

(c) Find the radius of curvature of the osculating circle to r(t) at t = π.

(d) Find the equation of the osculating circle to r(t) at t = π.

§§ Stage 3

Q[12]: Find the curvature κ as a function of arclength s (measured from (0, 0)) for the
curve

x(θ) =
ż θ

0
cos

(1
2 πt2)dt y(θ) =

ż θ

0
sin
(1

2 πt2)dt

Q[13](˚): Let C be the curve in R2 given by the graph of the function y = x3

3 . Let κ(x) be
the curvature of C at the point (x, x3/3). Find all points where κ(x) attains its maximal
values, or else explain why such points do not exist. What are the limits of κ(x) as x Ñ 8
and x Ñ ´8?

10



CURVES 1.4 CURVES IN THREE DIMENSIONS

1.4Ĳ Curves in Three Dimensions

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: In the sketch below of a three-dimensional curve and its osculating circle at a point,
label T̂ and N̂. Will B̂ be pointing out of the paper towards the reader, or into the paper
away from the reader?

Q[2]: In the formula

ds
dt

(t) = |v(t)| = |r1(t)|

does s stand for speed, or for arclength?

Q[3]: Which curve (or curves) below have positive torsion, which have negative torsion,
and which have zero torsion? The arrows indicate the direction of increasing t.

11



CURVES 1.4 CURVES IN THREE DIMENSIONS

a(t) = (cos t,´2 sin t, t/2)

z

x

y

b(t) = (cos t, 2 sin t,´t/2)

z

x

y

c(t) = (0, t/2 sin t, t cos t)

z

x

y

Q[4]: Consider a curve that is parametrized by arc length s.

(a) Show that if the curve has curvature κ(s) = 0 for all s, then the curve is a straight line.

(b) Show that if the curve has curvature κ(s) ą 0 and torsion τ(s) = 0 for all s, then the
curve lies in a plane.

(c) Show that if the curve has curvature κ(s) = κ0, a strictly positive constant, and
torsion τ(s) = 0 for all s, then the curve is a circle.

Q[5](˚): The surface z = x2 + y2 is sliced by the plane x = y. The resulting curve is
oriented from (0, 0, 0) to (1, 1, 2).

(a) Sketch the curve from (0, 0, 0) to (1, 1, 2).

(b) Sketch T̂, N̂ and B̂ at
(1

2 , 1
2 , 1

2

)
.

(c) Find the torsion at
(1

2 , 1
2 , 1

2

)
.

§§ Stage 2

Q[6](˚): Let C be the space curve

r(t) =
(
et ´ e´t) ı̂ıı +

(
et + e´t) ̂ + 2t k̂

(a) Find r1, r2 and the curvature of C.

(b) Find the length of the curve between r(0) and r(1).

Q[7]: Find the torsion of r(t) = (t, t2, t3) at the point (2, 4, 8).

Q[8]: Find the unit tangent, unit normal and binormal vectors and the curvature and
torsion of the curve

r(t) = t ı̂ıı +
t2

2
̂ +

t3

3
k̂

12



CURVES 1.4 CURVES IN THREE DIMENSIONS

Q[9]: For some constant c, define r(t) = (t3, t, ect). For which value(s) of c is τ(5) = 0? For
each of those values of c, find an equation for the plane containing the osculating circle to
the curve at t = 5.

Q[10](˚):
(a) Consider the parametrized space curve

r(t) =
(
t2, t, t3)

Find an equation for the plane passing through (1, 1, 1) with normal vector tangent to
r at that point.

(b) Find the curvature of the curve from (a) as a function of the parameter t.

Q[11](˚): Let C be the osculating circle to the helix r(t) =
(

cos t , sin t , t
)

at the point
where t = π/6. Find:

(a) the radius of curvature of C

(b) the center of C

(c) the unit normal to the plane of C

Q[12](˚):
(a) Consider the parametrized space curve

r(t) = (cos(t), sin(t), t2)

Find a parametric form for the tangent line at the point corresponding to t = π.

(b) Find the tangential component aT(t) of acceleration, as a function of t, for the
parametrized space curve r(t).

Q[13](˚): Suppose, in terms of the time parameter t , a particle moves along the path
r(t) = (sin t´ t cos t) ı̂ıı + (cos t + t sin t) ̂ + t2 k̂, 1 ď t ă 8.

(a) Find the speed of the particle at time t.

(b) Find the tangential component of acceleration at time t.

(c) Find the normal component of acceleration at time t.

(d) Find the curvature of the path at time t.

Q[14](˚): Assume the paraboloid z = x2 + y2 and the plane 2x + z = 8 intersect in a curve
C. C is traversed counter-clockwise if viewed from the positive z-axis.

(a) Parametrize the curve C.

(b) Find the unit tangent vector T̂, the principal normal vector N̂, the binormal vector B̂
and the curvature κ all at the point (2, 0, 4).

Q[15](˚): Consider the curve C given by

r(t) =
1
3

t3 ı̂ıı +
1?
2

t2 ̂ + t k̂, ´8 ă t ă 8.

13



CURVES 1.4 CURVES IN THREE DIMENSIONS

(a) Find the unit tangent T̂(t) as a function of t.

(b) Find the curvature κ(t) as a function of t.

(c) Determine the principal normal vector N̂ at the point
(8

3 , 2
?

2, 2
)
.

Q[16](˚): Suppose the curve C is the intersection of the cylinder x2 + y2 = 1 with the
plane x + y + z = 1.

(a) Find a parameterization of C.

(b) Determine the curvature of C.

(c) Find the points at which the curvature is maximum and determine the value of the
curvature at these points.

Q[17](˚): Let

r(t) = t2 ı̂ıı + 2t ̂ + ln t k̂

Compute the unit tangent and unit normal vectors T̂(t) and N̂(t). Compute the curvature
κ(t). Simplify whenever possible!

Q[18](˚):
(a) Find the length of the curve r(t) =

(
1, t2

2 , t3

3

)
for 0 ď t ď 1.

(b) Find the principal unit normal vector N̂ to r(t) = cos(t) ı̂ıı + sin(t) ̂ + t k̂ at t = π/4.

(c) Find the curvature of r(t) = cos(t) ı̂ıı + sin(t) ̂ + t k̂ at t = π/4.

Q[19](˚): A particle moves along a curve with position vector given by

r(t) =
(
t + 2 , 1´ t , t2/2

)

for ´8 ă t ă 8.

(a) Find the velocity as a function of t.

(b) Find the speed as a function of t.

(c) Find the acceleration as a function of t.

(d) Find the curvature as a function of t.

(e) Recall that the decomposition of the acceleration into tangential and normal
components is given by the formula

r2(t) =
d2s
dt2 T̂(t) + κ(t)

(ds
dt

)2
N̂(t)

Use this formula and your answers to the previous parts of this question to find N̂(t),
the principal unit normal vector, as a function of t.

(f) Find an equation for the osculating plane (the plane which best fits the curve) at the
point corresponding to t = 0.

14



CURVES 1.4 CURVES IN THREE DIMENSIONS

(g) Find the centre of the osculating circle at the point corresponding to t = 0.

Q[20](˚): Consider the curve C given by

r(t) =
t3

3
ı̂ıı +

t2
?

2
̂ + t k̂ ´8 ă t ă 8

(a) Find the unit tangent T̂(t) as a function of t.

(b) Find the curvature κ(t) as a function of t.

(c) Evaluate κ(t) at t = 0.

(d) Determine the principal normal vector N̂(t) at t = 0.

(e) Compute the binormal vector B̂(t) at t = 0.

Q[21](˚): A curve in R3 is given by r(t) = (t2 , t , t3).

(a) Find the parametric equations of the tangent line to the curve at the point (1,´1,´1).

(b) Find an equation for the osculating plane of the curve at the point (1, 1, 1).

Q[22](˚): A curve in R3 is given by

r(t) = (sin t´ t cos t) ı̂ıı + (cos t + t sin t) ̂ + t2 k̂, 0 ď t ă 8
(a) Find the length of the curve r(t) from r(0) = (0, 1, 0) to r(π) = (π,´1, π2).

(b) Find the curvature of the curve at time t ą 0.

Q[23](˚): At time t = 0, NASA launches a rocket which follows a trajectory so that its
position at any time t is

x =
4
?

2
3

t3/2, y =
4
?

2
3

t3/2, z = t(2´ t)

(a) Assuming that the flight ends when z = 0, find out how far the rocket travels.

(b) Find the unit tangent and unit normal to the trajectory at its highest point.

(c) Also, compute the curvature of the trajectory at its highest point.

Q[24](˚): Consider a particle travelling in space along the path parametrized by

x = cos3 t, y = sin3 t, z = 2 sin2 t

(a) Calculate the arc length of this path for 0 ď t ď π/2.

(b) Find the vectors T̂, N̂, B̂ for the particle at t = π/6.

Q[25]: Suppose that the curve C is the intersection of the cylinder x2 + y2 = 1 with the
surface z = x2 ´ y2.

(a) Find a parameterization of C.

(b) Determine the curvature of C at the point
(
1/
?

2 , 1/
?

2 , 0
)
.
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CURVES 1.4 CURVES IN THREE DIMENSIONS

(c) Find the osculating plane to C at the point
(
1/
?

2 , 1/
?

2 , 0
)
. In general, the

osculating plane to a curve r(t) at the point r(t0) is the plane which fits the curve best
at r(t0). It passes through r(t0) and has normal vector B̂(t0).

(d) Find the radius and the centre of the osculating circle to C at the point(
1/
?

2 , 1/
?

2 , 0
)
.

§§ Stage 3

Q[26](˚): Under the influence of a force field F, a particle of mass 2 kg is moving with
constant speed 3 m/s along the path given as the intersection of the plane z = x and the
parabolic cylinder z = y2, in the direction of increasing y. Find F at the point (1, 1, 1).
(Length is measured in m along the three coordinate axes.)

Q[27](˚): Consider the curve C in 3 dimensions given by

r(t) = 2tı̂ıı + t2 ̂ +
?

3t2k̂

for t P R.

(a) Compute the unit tangent vector T(t).

(b) Compute the unit normal vector N(t).

(c) Show that the binormal vector B to this curve does not depend on t and is one of the
following vectors:

1©




1/2
´?3/2

0


 2©




0?
3/2

1/2


 3©




0
´?3/2

1/2


 4©




0
´1/2?

3/2




This implies that C is a plane curve.

(d) According to your choice of vector 1©, 2©, 3© or 4©, give the equation of the plane
containing C.

(e) Compute the curvature κ(t) of the curve.

(f) Are there point(s) where the curvature is maximal? If yes, give the coordinates of the
point(s). If no, justify your answer.

(g) Are there point(s) where the curvature is minimal? If yes, give the coordinates of the
point(s). If no, justify your answer.

(h) Let
u := 2 ı̂ıı, v := ̂ +

?
3 k̂ w := ´?3 ̂ + k̂

(i) Express ı̂ıı, ̂, k̂ in terms of u, v, w.

(ii) Using (i), write r(t) in the form

a(t)u + b(t)v + c(t)w

where a(t), b(t) and c(t) are functions you have to determine. You should find
that one of these functions is zero.
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CURVES 1.4 CURVES IN THREE DIMENSIONS

(iii) Draw the curve given by
(
a(t), b(t)

)
in the xy-plane.

(iv) Is the drawing consistent with parts (f) and (g)? Explain.

Q[28](˚): Recall that if T̂ is the unit tangent vector to an oriented curve with arclength
parameter s, then the curvature κ and the principle normal vector N̂ are defined by the
equation

dT̂
ds

= κ N̂

Moreover, the torsion τ and the binormal vector B̂ are defined by the equations

B̂ = T̂ˆ N̂,
dB̂
ds

= ´τ N̂

Show that
dN̂
ds

= ´κ T̂ + τ B̂

Q[29](˚): A skier descends the hill z =
a

4´ x2 ´ y2 along a trail with parameterization

x = sin(2θ), y = 1´ cos(2θ), z = 2 cos θ, 0 ď θ ď π

2

Let P denote the point on the trail where x = 1.

(a) Find the vectors T̂, N̂, B̂ and the curvature κ of the ski trail at the point P.

(b) The skier’s acceleration at P is a = (´2, 3,´2
?

2). Find, at P,

(i) the rate of change of the skier’s speed and

(ii) the skier’s velocity (a vector).

Q[30](˚): A particle moves so that its position vector is given by
r(t) =

(
cos t , sin t , c sin t

)
, where t ą 0 and c is a constant.

(a) Find the velocity v(t) and the acceleration a(t) of the particle.

(b) Find the speed v(t) = |v(t)| of the particle.

(c) Find the tangential component of the acceleration of the particle.

(d) Show that the trajectory of this particle lies in a plane.

Q[31](˚): A race track between two hills is described by the parametric curve

r(θ) =
(

4 cos θ , 2 sin θ ,
1
4

cos(2θ)
)

, 0 ď θ ď 2π

(a) Compute the curvature of the track at the point
(´ 4, 0, 1

4

)
.

(b) Compute the radius of the circle that best approximates the bend at the point(´ 4, 0, 1
4

)
(that is, the radius of the osculating circle at that point).

(c) A car drives down the track so that its position at time t is given by r(t2). (Note the
relationship between t and θ is θ = t2). Compute the following quantities.
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CURVES 1.6 INTEGRATING ALONG A CURVE

(i) The speed at the point
(´ 4, 0, 1

4

)
.

(ii) The acceleration at the point
(´ 4, 0, 1

4

)
.

(iii) The magnitude of the normal component of the acceleration at the point(´ 4, 0, 1
4

)
.

1.6Ĳ Integrating Along a Curve

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Give an equation for arclength of a curve C as a line integral.

Q[2]:

(a) Show that the integral
ş

C f (x, y) ds along the curve C given in polar coordinates by
r = r(θ), θ1 ď θ ď θ2, is

ż θ2

θ1

f
(
r(θ) cos θ, r(θ) sin θ

)
d

r(θ)2 +

(
dr
dθ

(θ)

)2

dθ

(b) Compute the arc length of r = 1 + cos θ, 0 ď θ ď 2π. You may use the formula

1 + cos θ = 2 cos2 θ

2

to simplify the computation.

§§ Stage 2

Q[3]: Calculate
ş

C
( xy

z
)

ds, where C is the curve
(2

3 t3 ,
?

3t2 , 3t
)

from t = 1 to t = 2.

Q[4]: A hoop of radius r traces out the curve x2 + y2 = 1, where x and y are measured in
metres. At a point (x, y), its density is x2 kg per metre. What is the mass of the hoop?

Q[5]: Compute
ş

C(xy + z)ds where C is the straight line from (1, 2, 3) to (2, 4, 5).

Q[6]: Evaluate the path integral
ş

C f (x, y, z)ds for

(a) f (x, y, z) = x cos z, C : r(t) = tı̂ıı + t2 ̂, 0 ď t ď 1.

(b) f (x, y, z) = x+y
y+z , C : r(t) =

(
t, 2

3 t3/2, t
)
, 1 ď t ď 2.

Q[7]: Evaluate
ş

C sin x ds, where C is the curve (arcsec(t), ln t), 1 ď t ď ?2.
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CURVES 1.7 SLIDING ON A CURVE

Q[8](˚): A particle of mass m = 1 has position r(0) = ̂ and velocity v0 = ı̂ıı + k̂ at time
t = 0. The particle moves under a force

F(t) = ̂´ sin t k̂

where t denotes time.

(a) Find the position r(t) of the particle as a function of t.

(b) Find the position r(t1) of the particle when it crosses the plane x = π/2 for the first
time at t1.

(c) Determine the work done by F in moving the particle from r(0) to r(t1).

§§ Stage 3

Q[9](˚): Evaluate the line integral
ş

C F ¨ n̂ ds where F(x, y) = xy2 ı̂ıı + yex ̂ , C is the bound-
ary of the rectangle R: 0 ď x ď 3, ´1 ď y ď 1, and n̂ is the unit vector, normal to C,
pointing to the outside of the rectangle.

Q[10](˚): Let C be the curve given by

r(t) = t cos t ı̂ıı + t sin t ̂ + t2 k̂, 0 ď t ď π

(a) Find the unit tangent T̂ to C at the point (´π, 0, π2).

(b) Calculate the line integral
ż

C

b

x2 + y2 ds

(c) Find the equation of a smooth surface in 3-space containing the curve C.

(d) Sketch the curve C.

Q[11]: A wire traces out a path C described by the curve (t + 1
2 t2 , t´ 1

2 t2 , 4
3 t3/2), 0 ď t ď

4. Its density at the point (x, y, z) is ρ(x, y, z) =
(

x+y
2

)
. Find its centre of mass.

1.7Ĳ Sliding on a Curve

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS. You may assume the accelera-
tion due to gravity is g = 9.8 m/s2. You may also assume that the systems described function as they do in
the book: so tracks are frictionless, etc., unless otherwise mentioned.
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CURVES 1.7 SLIDING ON A CURVE

§§ Stage 1

Q[1]: The figure below represents a bead sliding down a wire. Sketch vectors
representing the normal force the wire exerts on the bead, and the force of gravity.

Assume the top of the page is “straight up.”

Q[2]: In the definition E = 1
2 m|v|2 + mgy, v is the derivative of position with respect to

what quantity?

Q[3]: A bead slides down a wire with the shape shown below, x ă 0.

x

y

T̂

N̂

´̂

Let WN̂ be the normal force exerted by the wire when the bead is at position x. Note
W ą 0. Is dW

dx positive or negative?

Q[4]: A skateboarder is rolling on a frictionless, very tall parabolic ramp with cross-section
described by y = x2. Given a boarder of mass m with system energy E, what is the highest
elevation the skater reaches? How does this compare to a circular culvert?

§§ Stage 2

Q[5]: A skateboarder of mass 100 kg is freely rolling in a frictionless circular culvert of
radius 5 m. If the skateboarder oscillates between vertical heights of 0 and 3 m, what is
the energy E of the system?

Q[6]: A skateboarder is rolling on a frictionless circular culvert of radius 5 m. What
should their speed be when they’re at the bottom of the culvert (y = 0) for them to make
it all the way around?

Q[7]: A ball of mass 1 kg rolls down a track with the shape
r(θ) = (3 cos θ, 5 sin θ, 4 + 4 cos θ) for 0 ď θ ď π

2 . Coordinates are measured in metres,
and the z axis is vertical (so the force due to gravity is ´mgk̂.)
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CURVES 1.7 SLIDING ON A CURVE

When θ = π/4, the particle has instantaneous velocity |v(t)| = 5 m/s. What is the normal
force exerted by the track at that time? Give your answer as a vector.

Q[8]: A bead of mass 1
9.8 kg slides down a wire in the shape of the curve

r(θ) = (sin θ, sin θ ´ θ), θ ě 0, with coordinates measured in metres. The bead will break
off the wire when the wire exerts a force of 100 N on the bead.

x

y

r(θ) = (sin θ, sin θ ´ θ)

If the bead breaks off the wire at θ = 13π
3 , how fast is the bead moving at that point?

Q[9]: A skier is gliding down a hill. The hill can be described as r(t) = (ln t, 1´ t),
1/e ď t ď e, with coordinates measured in kilometres. How fast would the skier have to
be moving in order to catch air?

§§ Stage 3

Q[10]: A wire follows the arclength-parametrized path r(s) = (x(s), y(s)). A bead,
equipped with a jet pack, slides down the wire. The jet pack can exert a variable force in
a direction tangent to the wire, UT̂. Assuming the bead slides with constant speed
ˇ

ˇ

ˇ

dr
dt

ˇ

ˇ

ˇ
= c

ˇ

ˇ

ˇ

dr
ds

ˇ

ˇ

ˇ
= c, find a simplified equation for U, the signed magnitude of the force

exerted by the jet pack.

Let the acceleration due to gravity be g, and let the mass of the bead with its jet pack be
m. Give U as a function of s.

Remark: most beads this author has seen did not have jet packs. However, in modelling a
frictionful3 system, friction acts as a force that is directly opposing the direction of motion
— much like our jet pack.

Q[11]: A snowmachine is cautiously descending a hill in low gear. Its engine provides a
force MT̂ parallel to the direction of motion. The engine provides whatever force is
necessary to keep the snowmachine moving at a constant speed, |v|. Its treads do not slip.

(a) Give a formula for M in terms of the mass m of the snowmachine, the acceleration
due to gravity g, and the tangent vector T̂ to the hill.

3 Frictionated? Frictiony? Befrictioned?
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CURVES 1.8 POLAR COORDINATES

(b) Let T̂ point in the downhill direction. Do you expect M to be positive or negative as
the snowmachine moves downhill?

(c) Find M for the hill of shape y = 1 + cos x (measured in metres) at the point x = 3π
4

for a snowmachine of mass 200 kg.

Q[12]: A skateboarder rolls along a culvert with elliptical cross-section described by
r(θ) = (4 cos θ, 3(1 + sin θ)), 0 ď θ ď 2π, with coordinates measured in metres.

(a) Give the height yS (in terms of m, g, and E) where the skater’s speed is zero.

(b) Write an equation relating E, m, g, and yA, where yA is the y-value where the skater
would become airborne, i.e. where W = 0. (You do not have to solve for yA
explicitly.)

(c) Suppose the skater has speed 11 m/s at the bottom of the culvert. Which of the
following describes their journey: they make it all the way around; they roll back and
forth in the bottom half; or they make it onto the ceiling, then fall off?

Q[13]: A frictionless roller-coaster track has the form of one turn of the circular helix with
parametrization (a cos θ, a sin θ, bθ). A car leaves the point where θ = 2π with zero
velocity and moves under gravity to the point where θ = 0. By Newton’s law of motion,
the position r(t) of the car at time t obeys

mr2(t) = N
(
r(t)

)´mgk̂

Here m is the mass of the car, g is a constant, ´mgk̂ is the force due to gravity and
N
(
r(t)

)
is the force that the roller-coaster track applies to the car to keep the car on the

track. Since the track is frictionless, N
(
r(t)

)
is always perpendicular to v(t) = dr

dt (t).

(a) Prove that E(t) = 1
2 m|v(t)|2 + mgr(t) ¨ k̂ is a constant, independent of t. (This is

called “conservation of energy”.)

(b) Prove that the speed |v| at the point θ obeys |v|2 = 2gb(2π ´ θ).

(c) Find the time it takes to reach θ = 0.

1.8Ĳ Polar Coordinates

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Consider the points

(x1, y1) = (3, 0) (x2, y2) = (1, 1) (x3, y3) = (0, 1)
(x4, y4) = (´1, 1) (x5, y5) = (´2, 0)

For each 1 ď i ď 5,
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CURVES 1.8 POLAR COORDINATES

• sketch, in the xy-plane, the point (xi, yi) and

• find the polar coordinates ri and θi, with 0 ď θi ă 2π, for the point (xi, yi).

Q[2]:

(a) Find all pairs (r, θ) such that

(´2, 0) =
(
r cos θ , r sin θ

)

(b) Find all pairs (r, θ) such that

(1, 1) =
(
r cos θ , r sin θ

)

(c) Find all pairs (r, θ) such that

(´1,´1) =
(
r cos θ , r sin θ

)

Q[3]: Consider the points

(x1, y1) = (3, 0) (x2, y2) = (1, 1) (x3, y3) = (0, 1)
(x4, y4) = (´1, 1) (x5, y5) = (´2, 0)

Also define, for each angle θ, the vectors

êr(θ) = cos θ ı̂ıı + sin θ ̂ êθ(θ) = ´ sin θ ı̂ıı + cos θ ̂

(a) Determine, for each angle θ, the lengths of the vectors êr(θ) and êθ(θ) and the angle
between the vectors êr(θ) and êθ(θ). Compute êr(θ)ˆ êθ(θ) (viewing êr(θ) and êθ(θ)
as vectors in three dimensions with zero k̂ components).

(b) For each 1 ď i ď 5, sketch, in the xy-plane, the point (xi, yi) and the vectors êr(θi) and
êθ(θi). In your sketch of the vectors, place the tails of the vectors êr(θi) and êθ(θi) at
(xi, yi).

Q[4](˚): Match the following equations with the corresponding pictures. Cartesian
coordinates are (x, y) and polar coordinates are (r, θ).

(A)
x

y

(B)
x

y
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CURVES 1.8 POLAR COORDINATES

(C)
x

y

(D)
x

y

(E)
x

y

(F)
x

y

(a) r = 2 + sin(4θ) (b) r = 1 + 2 sin(4θ) (c) r = 1

(d) r = 2 cos(θ), ´π
2 ď θ ď π

2 (e) r = eθ/10 + e´θ/10 (f) r = θ

§§ Stage 2

Q[5]: Recall that a point with polar coordinates r and θ has x = r cos θ and y = r sin θ. Let
r = f (θ) be the equation of a plane curve in polar coordinates. Find the curvature of this
curve at a general point θ.

Q[6]: Find the curvature of the cardioid r = a(1´ cos θ).
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VECTOR FIELDS

Chapter 2

2.1Ĳ Definitions and First Examples

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Below is a sketch of the vector field v(x, y).

x

y

Find the regions where the x-coordinates and y-coordinates are positive, negative, and
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VECTOR FIELDS 2.1 DEFINITIONS AND FIRST EXAMPLES

zero: v(x, y) ¨ ı̂ıı

$

’

&

’

%

ą 0 when
= 0 when
ă 0 when

v(x, y) ¨ ̂

$

’

&

’

%

ą 0 when
= 0 when
ă 0 when

You may assume that v(x, y) behaves as expected at the points you don’t see. That is, the
samples are representative of a smooth, continuous vector-valued function. You may also
assume the tick marks on the axes correspond to unit distances.

Q[2]: Below is a sketch of the vector field v(x, y).

x

y

Find the regions where the x-coordinates and y-coordinates are positive, negative, and
zero:

v(x, y) ¨ ı̂ıı

$

’

&

’

%

ą 0 when
= 0 when
ă 0 when

v(x, y) ¨ ̂

$

’

&

’

%

ą 0 when
= 0 when
ă 0 when

You may assume that the samples shown are representative of the general behaviour of
v(x, y). You may also assume the tick marks on the axes correspond to unit distances.

Q[3]: A platform with many small conveyor belts is aligned on a coordinate plane. Every
conveyor belt moves an object on top of it in the direction of the origin, and a conveyor
belt at position (x, y) causes an object on top of it to move with speed y. Assume the
objects do not interfere with one another.
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VECTOR FIELDS 2.1 DEFINITIONS AND FIRST EXAMPLES

Give a vector-valued formula for the velocity of an object at position (x, y).

Q[4]: Let F = P ı̂ıı + Q ̂ be the two-dimensional vector field sketched below.

x

y

A

Determine the signs of P, Q, BQ
Bx and BQ

By at the point A.

Q[5]: Imagine that the vector field v(x, y) = x ı̂ıı + y ̂ is the velocity field of a moving fluid.

(a) At time 0 you drop a twig into the fluid at the point (1, 1). What is the approximate
position of the twig at time t = 0.01?

(b) At time 0 you drop a twig into the fluid at the point (0, 0). What is the position of the
twig at time t = 0.01?

(c) At time 0 you drop a twig into the fluid at the point (0, 0). What is the position of the
twig at time t = 10?

Q[6]: Imagine that the vector field v(x, y) = 2x ı̂ıı´ ̂ is the velocity field of a moving fluid.
At time 0 you drop a twig into the fluid at the point (0, 0). What is the position of the twig
at time t = 10?

§§ Stage 2

Q[7]: A platform with many small conveyor belts is aligned on a coordinate plane. Every
conveyor belt moves an object on top of it in the direction of the origin, and a conveyor
belt at position (x, y) causes an object on top of it to move with speed y. Assume the
objects do not interfere with one another.

Give a vector-valued formula for the velocity of an object at position (x, y).

Q[8]: Friendly bees fly towards your face from all directions. The speed of each bee is
inversely proportional to its distance from your face. Find a vector field for the velocity of
the swarm.

Q[9]: Sketch the vector field v(x, y) = (x2, y).

Q[10]: Sketch the direction field of v(x, y) =
(
a

x2 + y2 ,
a

(x´ 1)2 + (y´ 1)2
)

.
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VECTOR FIELDS 2.1 DEFINITIONS AND FIRST EXAMPLES

Q[11]: Sketch the direction field of v(x, y) = (x2 + xy, y2 ´ xy).

Q[12]: Sketch the vector field v(x, y) =

[
1/3

a

x2 + y2
(x, y) +

1/3
a

(x´ 1)2 + y2
(x´ 1, y)

]
.

Q[13]: Sketch each of the following vector fields, by drawing a figure like Figure 2.1.1 in
the CLP-4 text.

(a) v(x, y) = x ı̂ıı + y ̂.

(b) v(x, y) = 2x ı̂ıı´ ̂.

(c) v(x, y) = y ı̂ıı´x ̂?
x2+y2 .

Q[14]: A body of mass M exerts a force of magnitude GM
D2 on a particle of unit mass

distance D away from itself, where G is a physical constant. The force acts in the
direction from the particle to the body.

M

Suppose a mass of 5 kg sits at position (0, 0), a mass of 3 kg sits at position (2, 3), and a
mass of 7 kg sits at position (4, 0) on a coordinate plane. Give the vector field f(x, y) of the
net gravitational force exerted on a unit mass at position (x, y).

§§ Stage 3

Q[15]:

a. A pole leans against a vertical wall. The pole has length 2, and it touches the wall at
height H = 1. The pole slides down, still touching the wall, with its height decreasing
at a rate of dH

dt = 0.5.

x

y

Find a vector function v : [0, 2]Ñ R2 for the velocity, when H = 1, of a point on the
pole that is p units from the lower end, using the coordinate system from the sketch
above.

b. The frame of an umbrella is constructed by attaching straight, rigid poles to a
common centre. The poles are all the same length, so they form radii of a circle.
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VECTOR FIELDS 2.2 FIELD LINES

The frame is lifted from the centre of the circle. The edges of the frame drag on the
ground, keeping the frame in the shape of a right circular cone that is becoming taller
and thinner.

Suppose the length of each pole is 2 metres, and the centre of the frame is being lifted
at a rate of 50 cm/s. Give a vector field for the velocity V(x, y, z) of a point (x, y, z) on
the frame when its centre is 1 metre above the ground.

Let the ground have height z = 0, and let the centre of the frame sit directly above the
origin.

2.2Ĳ Field Lines

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Q[1]: Suppose that the vector field v(x, y) sketched below represents the velocity of
moving water at the point (x, y) in the first quadrant of the xy-plane.

x

y

1

2

3

1 2 3

Sketch the path followed by a rubber ducky dropped in at the point

(a) (0, 2)

(b) (1, 0)

(c) (1, 2)
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VECTOR FIELDS 2.3 CONSERVATIVE VECTOR FIELDS

Q[2]: Find a vector field v(x, y) for which

x(t) = e´t cos t

y(t) = e´t sin t

is a field line.

§§ Stage 2

Q[3](˚): Consider the function f (x, y) = xy.

(a) Explicitly determine the field lines (flow lines) of F(x, y) =∇∇∇ f .

(b) Sketch the field lines of F and the level curves of f in the same diagram.

Q[4](˚): Find the field line of the vector field F = 2y ı̂ıı + x
y2 ̂ + eyk̂ that passes through

(1, 1, e).

Q[5](˚): Find and sketch the field lines of the vector field F = x ı̂ıı + 3y ̂.

2.3Ĳ Conservative Vector Fields

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: We’ve seen two calculations of the energy E of a system. Equation 1.7.1 told us
E = 1

2 m|v|2 + mgy, while Example 2.3.3 says 1
2 m|v(t)|2 ´ ϕ

(
x(t), y(t), z(t)

)
= E.

Consider a force given by F =∇∇∇ϕ for some differentiable function ϕ : R3 Ñ R. A
particle of mass m is being acted on by F and no other forces, and its position at time t is
given by (x(t), y(t), 0).

True or false: mgy(t) = ´ϕ(x(t), y(t), 0).

Q[2]: For each of the following fields, decide which of the following holds:

A. The screening test for conservative vector fields tells us F is conservative.

B. The screening test for conservative vector fields tells us F is not conservative.

C. The screening test for conservative vector fields does not tell us whether F is
conservative or not.

(The screening test is Theorem 2.3.9 in the text.)

a. F = xı̂ıı + ẑ + yk̂
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VECTOR FIELDS 2.3 CONSERVATIVE VECTOR FIELDS

b. F = y2zı̂ıı + x2ẑ + x2yk̂

c. F = (yexy + 1)ı̂ıı + (xexy + z)̂ +
(

1
z + y

)
k̂

d. F = y cos(xy)ı̂ıı + x sin(xy)̂

Q[3]: Suppose F is conservative and let a, b, and c be constants. Find a potential for
F + (a, b, c), OR give a conservative field F and constants a, b, and c for which F + (a, b, c)
is not conservative.

Q[4]: Prove, or find a counterexample to, each of the following statements.

a. If F is a conservative field and G is a non-conservative field, then F + G is
non-conservative.

b. If F and G are both non-conservative fields, then F + G is non-conservative.

c. If F and G are both conservative fields, then F + G is conservative.

§§ Stage 2

Q[5](˚): Let D be the domain consisting of all (x, y) such that x ą 1, and let F be the
vector field

F = ´ y
x2 + y2 ı̂ıı +

x
x2 + y2 ̂

Is F conservative on D? Give reasons for your answer.

Q[6]: Find a potential ϕ for F(x, y) = (x + y)ı̂ıı + (x´ y)̂, or prove none exists.

Q[7]: Find a potential ϕ for F(x, y) =
(

1
x ´ 1

y

)
ı̂ıı +
(

x
y2

)
̂, or prove none exists.

Q[8]: Find a potential ϕ for F(x, y, z) =
(
x2yz + xz

)
ı̂ıı+
(

1
3 x3z + y

)
̂+
(

1
3 x3y + 1

2 x2 + y
)

k̂,
or prove none exists.

Q[9]: Find a potential ϕ for

F(x, y) =
(

x
x2 + y2 + z2

)
ı̂ıı +
(

y
x2 + y2 + z2

)
̂ +

(
z

x2 + y2 + z2

)
k̂,

or prove none exists.

Q[10]: Determine whether or not each of the following vector fields are conservative.
Find the potential if it is.

(a) F(x, y, z) = xı̂ıı´ 2ŷ + 3zk̂

(b) F(x, y) = xı̂ıı´ŷ
x2+y2

Q[11]: Let F = e(z
2) ı̂ıı + 2Byz3 ̂ +

(
Axze(z

2) + 3By2z2) k̂.

(a) For what values of the constants A and B is the vector field F conservative on R3?

(b) If A and B have values found in (a), find a potential function for F.
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§§ Stage 3

Q[12]: Find the velocity field for a two dimensional incompressible fluid when there is a
point source of strength m at the origin. That is, fluid is emitted from the origin at area
rate 2πm cm2/sec. Show that this velocity field is conservative and find its potential.

Q[13]: A particle of mass 10 kg moves in the force field F =∇∇∇ϕ, where
ϕ(x, y, z) = ´(x2 + y2 + z2). When its potential energy is 0, the particle is at the origin,
and it moves with a velocity 2 m/s.

Following Example 2.3.3, give a region the particle can never escape.

Q[14]: A particle with constant mass m = 1/2 moves under a force field F = ̂ + 3 3
?

z k̂.
At position (0, 0, 0), its speed is 1. What is its speed at (1, 1, 1)?

(You may assume without proof that the particle does indeed reach the point (1, 1, 1).)

Q[15]: For some differentiable, real-valued functions f , g, h : R Ñ R, we define

F = 2 f (x) f 1(x)ı̂ıı + g1(y)h(z)̂ + g(y)h1(z).

Verify that F is conservative.

Q[16]: Describe the region in R3 where the field

F =
〈

xy, xz, y2 + z
〉

has curl 0.

2.4Ĳ Line Integals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Evaluate
ş

C x2y2 dx+ x3y dy counterclockwise around the square with vertices (0, 0),
(1, 0), (1, 1) and (0, 1).

Q[2]: For each of the following fields, decide which of the following holds:

A. The characterization of conservative vector fields, Theorem 2.4.7 (with
Theorem 2.3.9), tells us F is conservative.

B. The characterization of conservative vector fields, Theorem 2.4.7 (with
Theorem 2.3.9), tells us F is not conservative.

C. The characterization of conservative vector fields, Theorem 2.4.7 (with
Theorem 2.3.9), does not tell us whether F is conservative or not.
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a. F = xı̂ıı + ẑ + yk̂

b. F = y2zı̂ıı + x2ẑ + x2yk̂

c. F = (yexy + 1)ı̂ıı + (xexy + z)̂ +
(

1
z + y

)
k̂

d. F = y cos(xy)ı̂ıı + x sin(xy)̂

Q[3]: Let ϕ(x, y, z) = ex2+y2
+ cos(z2), and define F = ∇∇∇ϕ. Evaluate

ş

C F ¨ dr over the
closed curve C that is an ellipse traversed clockwise, centred at (1, 2, 3), passing through
the points (

?
5´ 1,´2,

?
5´ 3), ((

?
5´ 2)/2,´1/2, (

?
5´ 6)/2), and (´2,

?
3´ 2,

?
3´ 3).

Q[4]: Let P1 and P2 be points in R2. Let A and B be paths from P1 to P2, as shown below.

B

P1

P2

A

Suppose F is a conservative vector field in R2 with
ş

A F ¨ dr = 5. What is
ş

B F ¨ dr?

Q[5](˚): Let F(x, y, z) = ex sin y ı̂ıı +
[
aex cos y + bz

]
̂ + cx k̂. For which values of the con-

stants a, b, c is
ş

C F ¨ dr = 0 for all closed paths C?

Q[6]: Consider the four vector fields sketched below. Exactly one of those vector fields is
conservative. Determine which three vector fields are not conservative and explain why.

(a)

x

y (b)

x

y
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(c)

x

y (d)

x

y

Q[7](˚): Consider the vector field

F(x, y, z) =
x´ 2y
x2 + y2 ı̂ıı +

2x + y
x2 + y2 ̂ + z k̂

(a) Determine the domain of F.

(b) Compute∇∇∇ˆ F. Simplify the result.

(c) Evaluate the line integral
ż

C
F ¨ dr

where C is the circle of radius 2 in the plane z = 3, centered at (0, 0, 3) and traversed
counter-clockwise if viewed from the positive z-axis, i.e. viewed “from above”.

(d) Is F conservative?

Q[8]: Find the work,
ş

C F ¨ dr, done by the force field F = (x + y)ı̂ıı + (x ´ z)̂ + (z ´ y)k̂
in moving an object from (1, 0,´1) to (0,´2, 3). Does the work done depend on the path
used to get from (1, 0,´1) to (0,´2, 3)?

§§ Stage 2

Q[9]: Consider the vector field

V(x, y) = (ex cos y + x2, x2y + 3)

Evaluate the line integral
ş

C V ¨ dr along the oriented curve C obtained by moving from
(0, 0) to (1, 0) to (1, π) and finally to (0, π) along straight line segments.

Q[10]: Evaluate
ş

C F ¨ dr for

(a) F(x, y) = xy ı̂ıı´ x2 ̂ along y = x2 from (0, 0) to (1, 1).

(b) F(x, y, z) = (x´ z) ı̂ıı + (y´ z) ̂´ (x + y) k̂ along the polygonal path from (0, 0, 0) to
(1, 0, 0) to (1, 1, 0) to (1, 1, 1).

34



VECTOR FIELDS 2.4 LINE INTEGALS

Q[11](˚): Let C be the part of the curve of intersection of xyz = 8 and x = 2y which lies
between the points (2, 1, 4) and (4, 2, 1). Calculate

ż

C
F ¨ dr

where
F = x2 ı̂ıı + (x´ 2y) ̂ + x2y k̂

Q[12](˚): Let F = ex sin y ı̂ıı + [aex cos y + bz] ̂ + cx k̂. For which values of the constants
a, b, c is

ş

C F ¨ dr = 0 for all closed paths C?

Q[13]: Let F = 6x2yz2 ı̂ıı + (2x3z2 + 2y´ xz) ̂ + 4x3yz k̂ and let G = yz ı̂ıı + xy k̂.

(a) For what value of the constant λ is the vector field H = F + λG conservative on
3-space?

(b) Find a scalar potential φ(x, y, z) for the conservative field H referred to in part (a).

(c) Find
ş

C F ¨ dr if C is the curve of intersection of the two surfaces z = x and y = exz

from the point (0, 1, 0) to the point (1, e, 1).

Q[14](˚): Find the work done by the force field F(x, y, z) = (x ´ y2 , y ´ z2 , z ´ x2) on a
particle that moves along the line segment from (0, 0, 1) to (2, 1, 0).

Q[15](˚): Let F = x
x2+y2 ı̂ıı + y

x2+y2 ̂ + x3 k̂. Let P be the path which starts at (1, 0, 0), ends

at
( 1?

2
, 1?

2
, 1

2 ln 2
)

and follows

x2 + y2 = 1 xez = 1

Find the work done in moving a particle along P in the field F.

Q[16](˚): Let F =
(
yz cos x , z sin x + 2yz , y sin x + y2´ sin z

)
and let C be the line segment

r(t) = (t, t, t), for 0 ď t ď π/2. Evaluate
ż

C
F ¨ dr.

Q[17](˚): Let C be the upper half of the unit circle centred on (1, 0) (i.e. that part of the
circle which lies above the x-axis), oriented clockwise. Compute the line integral

ş

C xy dy.

Q[18](˚): Show that the following line integral is independent of path and evaluate the
integral.

ż

C
(yex + sin y)dx + (ex + sin y + x cos y)dy

where C is any path from (1, 0) to (0, π/2).

Q[19](˚): Evaluate the integral
ż

C
xy dx + yz dy + zx dz

around the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1), oriented clockwise as seen
from the point (1, 1, 1).
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Q[20](˚): Evaluate the line integral
ş

C F ¨ dr, where F is the conservative vector field

F(x, y, z) =
(
y + zex, x + ey sin z, z + ex + ey cos z

)

and C is the curve given by the parametrization

r(t) = (t, et, sin t), t from 0 to π.

Q[21](˚):
(a) For which values of the constants α, β and γ is the vector field

F(x, y, z) = αey ı̂ıı + (xey + β cos z) ̂´ γy sin z k̂

conservative?

(b) For those values of α, β and γ found in part (a), calculate
ş

C F ¨ dr, where C is the
curve parametrized by x = t2, y = et, z = πt, 0 ď t ď 1.

Q[22](˚): Consider the vector field F(x, y, z) = (cos x, 2 + sin y, ez).

(a) Compute the curl of F.

(b) Is there a function f such that F =∇∇∇ f ? Justify your answer.

(c) Compute the integral
ş

C F ¨ dr along the curve C parametrized by
r(t) = (t, cos t, sin t) with 0 ď t ď 3π.

Q[23](˚):
(a) Consider the vector field

F(x, y, z) = (z + ey, xey ´ ez sin y, 1 + x + ez cos y)

Find the curl of F. Is F conservative?

(b) Find the integral
ş

C F ¨ dr of the field F from (a) where C is the curve with
parametrization

r(t) = (t2, sin t, cos2 t)

where t ranges from 0 to π.

Q[24](˚): A physicist studies a vector field F. From experiments, it is known that F is of
the form

F = (x´ a)yex ı̂ıı + (xex + z3) ̂ + byz2 k̂

where a and b are some real numbers. From theoretical considerations, it is known that F
is conservative.

(a) Determine a and b.

(b) Find a potential f (x, y, z) such that∇∇∇ f = F.

(c) Evaluate the line intgeral
ş

C F ¨ dr where C is the curve defined by

r(t) =
(
t , cos 2t , cos t

)
, 0 ď t ď π
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(d) Evaluate the line integral

I =
ż

C
(x + 1)yex dx + (xex + z3)dy + 4yz2 dz,

where C is the same curve as in part (c). [Note: the “4” in the last term is not a
misprint!].

Questions 25 and 26 ask you to evaluate line integrals of vector fields that are not conservative, but that can
be expressed as a sum of a conservative vector field and another vector field that can be written concisely.

Q[25](˚): Let
F =

(
y2e3z + Axy3) ı̂ıı + (2xye3z + 3x2y2) ̂ + Bxy2e3z k̂

(a) Find all values of A and B for which the vector field F is conservative.

(b) If A and B have values found in (a), find a potential function for F.

(c) Let C be the curve with parametrization r(t) = e2t ı̂ıı + e´t ̂ + ln(1 + t) k̂ from (1, 1, 0)
to
(
e2 , 1

e , ln 2
)
. Evaluate
ż

C
(y2e3z + xy3)dx + (2xye3z + 3x2y2)dy + 3xy2e3z dz.

Q[26](˚):
(a) For which value(s) of the constants a, b is the vector field

F =
(
2x sin(πy)´ ez)ı̂ıı +

(
ax2 cos(πy)´ 3ez)̂´ (x + by

)
ezk̂

conservative?

(b) Let F be a conservative field from part (a). Find all functions ϕ for which F =∇∇∇ϕ.

(c) Let F be a conservative field from part (a). Evaluate
ş

C F ¨ dr where C is the
intersection of y = x and z = ln(1 + x) from (0, 0, 0) to (1, 1, ln 2).

(d) Evaluate
ş

C G ¨ dr where

G = (2x sin(πy)´ ez) ı̂ıı +
(

πx2 cos(πy)´ 3ez
)

̂´ xez k̂

and C is the intersection of y = x and z = ln(1 + x) from (0, 0, 0) to (1, 1, ln 2).

Q[27](˚): Consider the vector field

F(x, y, z) = ´2y cos x sin x ı̂ıı + (cos2 x + (1 + yz)eyz) ̂ + y2eyz k̂

(a) Find a real valued function f (x, y, z) such that F =∇∇∇ f .

(b) Evaluate the line integral
ż

C
F ¨ dr

where C is the arc of the curve r(t) =
(
t, et, t2 ´ π2) , 0 ď t ď π, traversed from

(0, 1,´π2) to (π, eπ, 0).
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Q[28](˚): Consider the vector field F(x, y, z) = 2x ı̂ıı + 2y ̂ + 2z k̂.

(a) Compute∇∇∇ˆ F.

(b) If C is any path from (0, 0, 0) to (a1, a2, a3) and a = a1 ı̂ıı + a2 ̂ + a3 k̂, show that
ş

C F ¨ dr = a ¨ a.

Q[29](˚): Let C be the parameterized curve given by

r(t) =
(

cos t, sin t, t
)
, 0 ď t ď π

2

and let
F =

(
eyz , xzeyz + zey , xyeyz + ey)

(a) Compute and simplify∇∇∇ˆ F.

(b) Compute the work integral
ş

C F ¨ dr.

Q[30](˚):
(a) Show that the planar vector field

F(x, y) =
(
2xy cos(x2) , sin(x2)´ sin(y)

)

is conservative.

(b) Find a potential function for F.

(c) For the vector field F from above compute
ş

C F ¨ dr, where C is the part of the graph
x = sin(y) from y = π/2 to y = π.

Q[31](˚): Consider the following force field, in which m, n, p, q are constants:

F = (mxyz + z2 ´ ny2) ı̂ıı + (x2z´ 4xy) ̂ + (x2y + pxz + qz3) k̂

(a) Find all values of m, n, p, q such that
ű

C F ¨ dr = 0 for all piecewise smooth closed
curves C in R3.

(b) For every possible choice of m, n, p, q in (a), find the work done by F in moving a
particle from the bottom to the top of the sphere x2 + y2 + z2 = 2z. (The direction of
k̂ defines “up”.)

§§ Stage 3

Q[32]: Let C be the curve from (0, 0, 0) to (1, 1, 1) along the intersection of the surfaces
y = x2 and z = x3.

(a) Find
ş

C ρ ds if s is arc length along C and ρ = 8x + 36z.

(b) Find
ş

C F ¨ dr if F = sin y ı̂ıı + (x cos y + z) ̂ + (y + z) k̂.
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Q[33](˚): The curve C is the helix that winds around the cylinder x2 + y2 = 1
(counterclockwise, as viewed from the positive z-axis, looking down on the xy-plane). It
starts at the point (1, 0, 0), winds around the cylinder once, and ends at the point (1, 0, 1).
Compute the line integral of the vector field

F(x, y, z) = (´y, x, z2)

along C.

Q[34](˚): Evaluate the line integrals below. (Use any method you like.)

(a)
ş

C(x2 + y)dx + x dy, where C is the arc of the parabola y = 9´ x2 from (´3, 0) to
(3, 0).

(b)
ş

C F ¨ n̂ ds, where F(x, y) = 2x2ı̂ıı + yex ̂, C is the boundary of the square 0 ď x ď 1,
0 ď y ď 1. Here n̂ is the unit normal vector pointing outward from the square, and s
is arc length.

Q[35](˚): A particle of mass m = 1 has position r0 = ̂ and velocity v0 = ı̂ıı + k̂ at time
t = 0. The particle moves under a force F(t) = ̂´ sin t k̂, where t denotes time.

(a) Find the position r(t) of the particle as a function of t.

(b) Find the position r1 of the particle when it crosses the plane x = π/2 for the first time
after time t = 0.

(c) Determine the work done by F in moving the particle from r0 to r1.

Questions 36 and 37 ask you to find a path that leads to a particular value of a line integral. Many such
paths are possible — you only need to find one.

Q[36](˚):
(a) Consider the vector field F

(
x, y
)
= (3y, x´ 1) in R2 . Compute the line integral

ż

L
F ¨ dr

where L is the line segment from (2, 2) to (1, 1).

(b) Find an oriented path C from (2, 2) to (1, 1) such that
ż

C
F ¨ dr = 4

where F is the vector field from (a).

Q[37](˚): Let F = (2y + 2) ı̂ıı be a vector field on R2. Find an oriented curve C from (0, 0) to
(2, 0) such that

ş

C F ¨ dr = 8.

Q[38](˚): Let
F(x, y) =

(
1, yg(y)

)

and suppose that g(y) is a function defined everywhere with everywhere continuous
partials. Show that for any curve C whose endpoints P and Q lie on the x-axis,

distance between P and Q =

ˇ

ˇ

ˇ

ˇ

ż

C
F ¨ dr

ˇ

ˇ

ˇ

ˇ
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Q[39](˚): Let S be the surface z = 2 + x2 ´ 3y2 and let
F(x, y, z) = (xz + axy2)ı̂ıı + yẑ + z2k̂. Consider the points P1 = (1, 1, 0) and P2 = (0, 0, 2)
on the surface S.

Find a value of the constant a so that
ş

C1
F ¨dr =

ş

C2
F ¨dr for any two curves C1 and C2 on

the surface S from P1 to P2.

Q[40](˚): Consider the vector field F defined as

F(x, y, z) =
(
(1 + ax2)ye3x2 ´ bxz cos(x2z) , xe3x2

, x2 cos(x2z)
)

where a and b are real valued constants.

(a) Compute∇∇∇ˆ F.

(b) Determine for which values a and b the vector field F is conservative.

(c) For the values of a and b obtained in part (b), find a potential function f such that
∇∇∇ f = F.

(d) Evaluate the line integral
ż

C

(
ye3x2

+ 2xz cos(x2z)
)

dx + xe3x2
dy + x2 cos(x2z)dz

where C is the arc of the curve (t, t, t3) starting at the point (0, 0, 0) and ending at the
point (1, 1, 1).

Q[41](˚): Let C be the curve from (0, 0, 0) to (1, 1, 1) along the intersection of the surfaces
y = x2 and z = x3.

(a) Find
ş

C F ¨ dr if F = (xz´ y) ı̂ıı + (z + x) ̂ + y k̂.

(b) Find
ş

C ρ ds if s is arc length along C and ρ(x, y, z) = 8x + 36z.

(c) Find
ş

C F ¨ dr if F = sin y ı̂ıı + (x cos y + z) ̂ + (y + z) k̂.

Q[42](˚): The vector field F(x, y, z) = Ax3y2z ı̂ıı +
(
z3 + Bx4yz

)
̂ +
(
3yz2 ´ x4y2) k̂ is

conservative on R3.

(a) Find the values of the constants A and B.

(b) Find a potential ϕ such that F =∇∇∇ϕ on R3.

(c) If C is the curve y = ´x, z = x2 from (0, 0, 0) to (1,´1, 1), evaluate I =
ş

C F ¨ dr.

(d) Evaluate J =
ş

C(z´ 4x3y2z)dx + (z3 ´ x4yz)dy + (3yz2 ´ x4y2)dz, where C is the
curve of part (c).

(e) Let T be the closed triangular path with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1),
oriented counterclockwise as seen from the point (1, 1, 1). Evaluate

ş

T (zı̂ıı + F) ¨ dr.

Q[43](˚): A particle of mass
m = 2
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is acted on by a force
F =

(
4t , 6t2 , ´4t

)

At t = 0, the particle has velocity zero and is located at the point (1, 2, 3).

(a) Find the velocity vector v(t) for t ě 0.

(b) Find the position vector r(t) for t ě 0.

(c) Find κ(t) the curvature of the path traversed by the particle for t ě 0.

(d) Find the work done by the force on the particle from t = 0 to t = T.

Q[44](˚): The position of an airplane at time t is given by x = y = 4
?

2
3 t3/2, z = t(2´ t)

from take-off at t = 0 to landing at t = 2.

(a) What is the total distance the plane travels on this flight?

(b) Find the radius of curvature κ at the apex of the flight, which occurs at t = 1.

(c) Two external forces are applied to the plane during the flight: the force of gravity
G = ´Mg k̂, where M is the mass of the plane and g is a constant; and a friction force
F = ´|v|2v, where v is the velocity of the plane. Find the work done by each of these
forces during the flight.

(d) One half-hour later, a bird follows the exact same flight — path as the plane,
travelling at a constant speed v = 3. One can show that at the apex of the path, i.e.
when the bird is at

(4
?

2
3 , 4

?
2

3 , 1
)
, the principal unit normal N̂ to the path points in the

´k̂ direction. Find the bird’s (vector) acceleration at that moment.
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Chapter 3

3.1Ĳ Parametrized Surfaces

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Parametrize the surface given by z = ex+1 + xy in terms of x and y.

Q[2](˚): Let S be the surface given by

r(u, v) =
(
u + v , u2 + v2 , u´ v

)
, ´2 ď u ď 2, ´2 ď v ď 2

This is a surface you are familiar with. What surface is it (it may be just a portion of one
of the following)?

sphere helicoid ellipsoid saddle parabolic bowl cylinder cone plane

§§ Stage 2

Q[3](˚): Suppose S is the part of the hyperboloid x2 + y2 ´ 2z2 = 1 that lies inside the
cylinder x2 + y2 = 9 and above the plane z = 1 (i.e. for which z ě 1).

Which of the following are parameterizations of S?

(a) The vector function

r(u, v) = u ı̂ıı + v ̂ +

?
u2 + v2 ´ 1?

2
k̂

with domain D =
 

(u, v)
ˇ

ˇ 2 ď u2 + v2 ď 9
(

.
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(b) The vector function

r(u, v) = u sin v ı̂ıı´ u cos v ̂ +

c

u2

2
´ 1

2
k̂

with domain D =
 

(u, v)
ˇ

ˇ

?
3 ď u ď 3, 0 ď v ď 2π

(

.

(c) The vector function

r(u, v) =
a

1 + 2v2 cos u ı̂ıı +
a

1 + 2v2 sin u ̂ + v k̂

with domain D =
 

(u, v)
ˇ

ˇ 0 ď u ď 2π, 1 ď v ď 2
(

.

(d) The vector function

r(u, v) =
?

1 + u sin v ı̂ıı +
?

1 + u cos v ̂ +

c

u
2

k̂

with domain D =
 

(u, v)
ˇ

ˇ 2 ď u ď 8, 0 ď v ď 2π
(

.

(e) The vector function

r(u, v) =
?

u cos v ı̂ıı´?u sin v ̂ +

?
u + 1?

2
k̂

with domain D =
 

(u, v)
ˇ

ˇ 3 ď u ď 9, 0 ď v ď 2π
(

.

Q[4](˚): Suppose the surface S is the part of the sphere x2 + y2 + z2 = 2 that lies inside
the cylinder x2 + y2 = 1 and for which z ě 0. Which of the following are
parameterizations of S?

(a) r(φ, θ) = 2 sin φ cos θ ı̂ıı + 2 cos φ ̂ + 2 sin φ sin θ k̂

0 ď φ ď π
4 , 0 ď θ ď 2π

(b) r(x, y) = x ı̂ıı´ y ̂ +
a

2´ x2 ´ y2 k̂

x2 + y2 ď 1

(c) r(u, θ) = u sin θ ı̂ıı + u cos θ ̂ +
?

2´ u2 k̂

0 ď u ď 2, 0 ď θ ď 2π

(d) r(φ, θ) =
?

2 sin φ cos θ ı̂ıı +
?

2 sin φ sin θ ̂ +
?

2 cos φ k̂

0 ď φ ď π
4 , 0 ď θ ď 2π

(e) r(φ, z) = ´?2´ z2 sin φ ı̂ıı +
?

2´ z2 cos φ ̂ + z k̂

0 ď φ ď 2π, 1 ď z ď ?2

Q[5](˚): Let S be the part of the paraboloid z + x2 + y2 = 4 lying between the planes
z = 0 and z = 1. For each of the following, indicate whether or not it correctly
parameterizes the surface S.

(a) r(u, v) = u ı̂ıı + v ̂ + (4´ u2 ´ v2) k̂, 0 ď u2 + v2 ď 1

(b) r(u, v) = (
?

4´ u cos v) ı̂ıı + (
?

4´ u sin v) ̂ + u k̂, 0 ď u ď 1, 0 ď v ď 2π

(c) r(u, v) = (u cos v) ı̂ıı + (u sin v) ̂ + (4´ u2) k̂,
?

3 ď u ď 2, 0 ď v ď 2π
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§§ Stage 3

Q[6](˚): Consider the following surfaces

• S1 is the hemisphere given by the equation x2 + y2 + z2 = 4 with z ě 0.

• S2 is the cylinder given by the equation x2 + y2 = 1.

• S3 is the cone given by the equation z2 = x2 + y2 with z ě 0.

Consider the following parameterizations:

A. r(θ, φ) =
(?

4 cos θ sin φ ,
?

4 sin θ sin φ ,
?

4 cos φ
)
, 0 ď θ ď 2π, 0 ď φ ď π/6

B. r(θ, φ) =
(?

4 cos θ sin φ ,
?

4 sin θ sin φ ,
?

4 cos φ
)
, 0 ď θ ď 2π, 0 ď φ ď π/4

C. r(θ, φ) =
(?

4 cos θ sin φ ,
?

4 sin θ sin φ ,
?

4 cos φ
)
, 0 ď θ ď 2π, 0 ď φ ď π/3

D. r(θ, z) =
(?

4´ z2 cos θ ,
?

4´ z2 sin θ , z
)

0 ď θ ď 2π, 1 ď z ď 2

E. r(θ, z) =
(?

4´ z2 cos θ ,
?

4´ z2 sin θ , z
)

0 ď θ ď 2π,
?

2 ď z ď 2

F. r(θ, z) =
(?

4´ z2 cos θ ,
?

4´ z2 sin θ , z
)

0 ď θ ď 2π,
?

3 ď z ď 2

G. r(θ, z) =
(
z cos θ , z sin θ , z

)
0 ď θ ď 2π, 0 ď z ď 1

H. r(θ, z) =
(
z cos θ , z sin θ , z

)
0 ď θ ď 2π, 0 ď z ď ?2

I. r(θ, z) =
(
z cos θ , z sin θ , z

)
0 ď θ ď 2π, 0 ď z ď ?3

J. r(x, y) =
(
x , y ,

a

x2 + y2
)

x2 + y2 ď 1

K. r(x, y) =
(
x , y ,

a

x2 + y2
)

x2 + y2 ď ?2

L. r(x, y) =
(
x , y ,

a

x2 + y2
)

x2 + y2 ď 2

For each of the following, choose from above all of the valid parameterization of each of
the given surfaces. Note that there may be one or more valid parameterization for each
surface, and not necessarily all of the above parameterizations will be used.

(a) The part of S1 contained inside S2:

(b) The part of S1 contained inside S3:

(c) The part of S3 contained inside S2:

(d) The part of S3 contained inside S1:

Q[7]: Parametrize a solid of rotation about a line not parallel to an axis. Maybe first show
that the plane you’re rotating is normal to that axis.

(a) Give a parametric equation for the circle of radius 1, centred at (2, 2, 4), lying in the
plane x = y.

(b) Give a parametrized equation for the surface formed by rotating the circle from part
(a) about the line r(t) = 4ı̂ıı + 4̂ + tk̂.
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z

x

y(2, 2, 4)

r(t) = (4, 4, t)

3.2Ĳ Tangent Planes

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Is it reasonable to say that the surfaces x2 + y2 +(z´1)2 = 1 and x2 + y2 +(z+ 1)2 =
1 are tangent to each other at (0, 0, 0)?

Q[2]: Let the point r0 = (x0, y0, z0) lie on the surface G(x, y, z) = 0. Assume that
∇∇∇G(x0, y0, z0) ‰ 0. Suppose that the parametrized curve r(t) =

(
x(t), y(t), z(t)

)
is

contained in the surface and that r(t0) = r0. Show that the tangent line to the curve at r0
lies in the tangent plane to G = 0 at r0.

Q[3]: Find the parametric equations of the normal line to the surface z = f (x, y) at the
point

(
x0 , y0 , z0= f (x0, y0)

)
. By definition, the normal line in question is the line through

(x0, y0, z0) whose direction vector is perpendicular to the surface at (x0, y0, z0).

Q[4]: Let F(x0, y0, z0) = G(x0, y0, z0) = 0 and let the vectors∇∇∇F(x0, y0, z0) and∇∇∇G(x0, y0, z0)
be nonzero and not be parallel to each other. Find the equation of the normal plane to the
curve of intersection of the surfaces F(x, y, z) = 0 and G(x, y, z) = 0 at (x0, y0, z0). By
definition, that normal plane is the plane through (x0, y0, z0) whose normal vector is the
tangent vector to the curve of intersection at (x0, y0, z0).

Q[5]: Let f (x0, y0) = g(x0, y0) and let
(

fx(x0, y0), fy(x0, y0)
) ‰ (

gx(x0, y0), gy(x0, y0)
)
.

Find the equation of the tangent line to the curve of intersection of the surfaces z = f (x, y)
and z = g(x, y) at (x0 , y0 , z0 = f (x0, y0)).

§§ Stage 2

Q[6](˚): Let f (x, y) =
x2y

x4 + 2y2 . Find the tangent plane to the surface z = f (x, y) at the
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point
(
´1 , 1 , 1

3

)
.

Q[7](˚): Find the tangent plane to

27
a

x2 + y2 + z2 + 3
= 9

at the point (2, 1, 1).

Q[8](˚): Consider the surface z = f (x, y) defined implicitly by the equation xyz2 + y2z3 =
3 + x2. Use a 3–dimensional gradient vector to find the equation of the tangent plane to
this surface at the point (´1, 1, 2). Write your answer in the form z = ax + by + c, where
a, b and c are constants.

Q[9](˚): A surface is given by
z = x2 ´ 2xy + y2.

(a) Find the equation of the tangent plane to the surface at x = a, y = 2a.

(b) For what value of a is the tangent plane parallel to the plane x´ y + z = 1?

Q[10](˚): A surface S is given by the parametric equations

x = 2u2

y = v2

z = u2 + v3

Find an equation for the tangent plane to S at the point (8, 1, 5).

Q[11](˚): Let S be the surface given by

r(u, v) =
(
u + v , u2 + v2 , u´ v

)
, ´2 ď u ď 2, ´2 ď v ď 2

Find the tangent plane to the surface at the point (2, 2, 0).

Q[12](˚): Find the tangent plane and normal line to the surface z = f (x, y) = 2y
x2+y2 at

(x, y) = (´1, 2).

Q[13](˚): Find all the points on the surface x2 + 9y2 + 4z2 = 17 where the tangent plane is
parallel to the plane x´ 8z = 0.

Q[14](˚): Let S be the surface z = x2 + 2y2 + 2y´ 1. Find all points P(x0, y0, z0) on S with
x0 ‰ 0 such that the normal line at P contains the origin (0, 0, 0).

Q[15](˚): Find all points on the hyperboloid z2 = 4x2 + y2 ´ 1 where the tangent plane is
parallel to the plane 2x´ y + z = 0.

§§ Stage 3

Q[16](˚):
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(a) Find a vector perpendicular at the point (1, 1, 3) to the surface with equation
x2 + z2 = 10.

(b) Find a vector tangent at the same point to the curve of intersection of the surface in
part (a) with surface y2 + z2 = 10.

(c) Find parametric equations for the line tangent to that curve at that point.

Q[17](˚): Let P be the point where the curve

r(t) = t3 ı̂ıı + t ̂ + t2 k̂, (0 ď t ă 8)

intersects the surface
z3 + xyz´ 2 = 0

Find the (acute) angle between the curve and the surface at P.

Q[18]: Find all horizontal planes that are tangent to the surface with equation

z = xye´(x2+y2)/2

What are the largest and smallest values of z on this surface?

3.3Ĳ Surface Integrals

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Let 0 ă θ ă π
2 , and a, b ą 0. Denote by S the part of the surface z = y tan θ with

0 ď x ď a, 0 ď y ď b.

(a) Find the surface area of S without using any calculus.

(b) Find the surface area of S by using (3.3.2) in the CLP-4 text.

Q[2]: Let a, b, c ą 0. Denote by S the triangle with vertices (a, 0, 0), (0, b, 0) and (0, 0, c).

(a) Find the surface area of S in three different ways, each using (3.3.2) in the CLP-4 text.

(b) Denote by Txy the projection of S onto the xy-plane. (It is the triangle with vertices
(0, 0, 0) (a, 0, 0) and (0, b, 0).) Similarly use Txz to denote the projection of S onto the
xz-plane and Tyz to denote the projection of S onto the yz-plane. Show that

Area(S) =
b

Area(Txy)2 + Area(Txz)2 + Area(Tyz)2

Q[3]: Let a, h ą 0. Denote by S the part of the cylinder x2 + z2 = a2 with x ě 0, 0 ď y ď h
and z ě 0.
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y

z

x

S

(a, h, 0)

(a) Find the surface area of S without using any calculus.

(b) Parametrize S by

r(θ, y) = a cos θ ı̂ıı + y ̂ + a sin θ k̂ 0 ď θ ď π

2
, 0 ď y ď h

Find the surface area of S by using (3.3.1) in the CLP-4 text.

§§ Stage 2

Q[4]: Let S be the part of the surface z = xy lying inside the cylinder x2 + y2 = 3. Find
the moment of inertia of S about the z-axis, that is,

I =
ĳ

S

(x2 + y2) dS

Q[5](˚): Find the surface area of the part of the paraboloid z = a2 ´ x2 ´ y2 which lies
above the xy–plane.

Q[6](˚): Find the area of the portion of the cone z2 = x2 + y2 lying between the planes
z = 2 and z = 3.

Q[7](˚): Determine the surface area of the surface given by z = 2
3

(
x3/2 + y3/2), over the

square 0 ď x ď 1, 0 ď y ď 1.

Q[8](˚):

(a) To find the surface area of the surface z = f (x, y) above the region D, we integrate
ť

D F(x, y) dA. What is F(x, y)?

(b) Consider a “Death Star”, a ball of radius 2 centred at the origin with another ball of
radius 2 centred at (0, 0, 2

?
3) cut out of it. The diagram below shows the slice where

y = 0.
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x

z

p1, 0,?
3q

2
?
3

2

π
6

(i) The Rebels want to paint part of the surface of Death Star hot pink; specifically,
the concave part (indicated with a thick line in the diagram). To help them
determine how much paint is needed, carefully fill in the missing parts of this
integral:

surface area =

ż ż

dr dθ

(ii) What is the total surface area of the Death Star?

Q[9](˚): Find the area of the cone z2 = x2 + y2 between z = 1 and z = 16.

Q[10](˚): Find the surface area of that part of the hemisphere z =
a

a2 ´ x2 ´ y2 which lies
within the cylinder

(
x´ a

2

)2
+ y2 =

( a
2

)2.

Q[11]: The cylinder x2 + y2 = 2x cuts out a portion S of the upper half of the cone
x2 + y2 = z2. Compute

ĳ

S

(x4 ´ y4 + y2z2 ´ z2x2 + 1)dS

Q[12]: Find the surface area of the torus obtained by rotating the circle (x´ R)2 + z2 = r2

(the circle is contained in the xz-plane) about the z-axis.

Q[13]: A spherical shell of radius a is centred at the origin. Find the centroid (i.e. the
centre of mass with constant density) of the part of the sphere that lies in the first octant.

Q[14]: Find the area of that part of the cylinder x2 + y2 = 2ay lying outside z2 = x2 + y2.

Q[15](˚): Let a and b be positive constants, and let S be the part of the conical surface

a2z2 = b2(x2 + y2)

where 0 ď z ď b. Consider the surface integral

I =
ĳ

S

(x2 + y2)dS.
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(a) Express I as a double integral over a disk in the xy-plane.

(b) Use the parametrization x = t cos θ, y = t sin θ, etc., to express I as a double integral
over a suitable region in the tθ-plane.

(c) Evaluate I using the method of your choice.

Q[16]: Evaluate, for each of the following, the flux
ť

S F ¨ n̂ dS where n̂ is the outward
normal to the surface S.

(a) F = (x2 + y2 + z2)
n
(x ı̂ıı + y ̂ + z k̂) and the surface S is the sphere x2 + y2 + z2 = a2.

(b) F = x ı̂ıı + y ̂ + z k̂ and S is the surface of the rectangular box 0 ď x ď a, 0 ď y ď b,
0 ď z ď c.

(c) F = y ı̂ıı + z k̂ and S is the surface of the solid cone 0 ď z ď 1´a

x2 + y2.

Q[17](˚): Let S be the part of the surface x2 + y2 + 2z = 2 that lies above the square
´1 ď x ď 1, ´1 ď y ď 1.

(a) Find
ĳ

S

x2 + y2
a

1 + x2 + y2
dS.

(b) Find the flux of F = xı̂ıı + ŷ + zk̂ upward through S .

Q[18](˚): Let S be the part of the surface z = xy that lies above the square 0 ď x ď 1,
0 ď y ď 1 in the xy-plane.

(a) Find
ĳ

S

x2y
a

1 + x2 + y2
dS.

(b) Find the flux of F = xı̂ıı + ŷ + k̂ upward through S .

Q[19](˚): Find the area of the part of the surface z = y3/2 that lies above 0 ď x, y ď 1.

Q[20](˚): Let S be spherical cap which consists of the part of the sphere
x2 + y2 + (z´ 2)2 = 4 which lies under the plane z = 1. Let f (x, y, z) = (2´ z)(x2 + y2).
Calculate

ĳ

S

f (x, y, z)dS

Q[21](˚):
(a) Find a parametrization of the surface S of the cone whose vertex is at the point

(0, 0, 3), and whose base is the circle x2 + y2 = 4 in the xy-plane. Only the cone
surface belongs to S, not the base. Be careful to include the domain for the
parameters.

(b) Find the z-coordinate of the centre of mass of the surface S from (a).

Q[22](˚): Let S be the surface of a cone of height a and base radius a. The surface S does
not include the base of the cone or the interiour of the cone. Find the centre of mass of S.
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Locate the cone in a coordinate system so that its base is in the xy-plane, and its vertex on
the z-axis. So the vertex will be the point (0, 0, a). The base is a circle of radius a in the
xy-plane with centre at the origin. The cone surface is characterized by the fact that for
every point of S, the distance from the z-axis and the distance from the xy-plane add up
to a.

Q[23](˚): Let S be the portion of the elliptical cylinder x2 + 1
4 y2 = 1 lying between the

planes z = 0 and z = 1 and let n̂ denote the outward normal to S. Let F = x ı̂ıı + xyz ̂ +
zy4 k̂. Calculate the flux integral

ť

S F ¨ n̂ dS directly, using an appropriate parameteriza-
tion of S.

Q[24](˚):
Evaluate the flux integral

ĳ

S

F ¨ n̂ dS

where F(x, y, z) = (x + 1) ı̂ıı + (y + 1) ̂ + 2z k̂, and S is the part of the paraboloid z =
4´ x2 ´ y2 that lies above the triangle 0 ď x ď 1, 0 ď y ď 1´ x. S is oriented so that its
unit normal has a negative z-component.

Q[25](˚): Evaluate the surface integral
ĳ

S

xy2 dS

where S is the part of the sphere x2 + y2 + z2 = 2 for which x ěa

y2 + z2.

Q[26](˚): Let S be the surface given by the equation

x2 + z2 = sin2 y

lying between the planes y = 0 and y = π. Evaluate the integral
ĳ

S

b

1 + cos2 y dS

Q[27](˚): Let S be the part of the paraboloid z = 1´ x2 ´ y2 lying above the xy-plane. At
(x, y, z) S has density

ρ(x, y, z) =
z?

5´ 4z

Find the centre of mass of S.

Q[28](˚): Let S be the part of the plane

x + y + z = 2

that lies in the first octant oriented so that n̂ has a positive k̂ component. Let

F = x ı̂ıı + y ̂ + z k̂
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Evaluate the flux integral
ĳ

S

F ¨ n̂ dS

Q[29](˚): Find the net flux
ť

S F ¨ n̂ dS of the vector field F(x, y, z) = (x, y, z) upwards (with
respect to the z-axis) through the surface S parametrized r =

(
uv2 , u2v , uv

)
for 0 ď u ď 1,

0 ď v ď 3.

Q[30](˚): Let S be the surface obtained by revolving the curve z = ey , 0 ď y ď 1, around
the y-axis, with the orientation of S having n̂ pointing toward the y-axis.

(a) Draw a picture of S and find a parameterization of S.

(b) Compute the integral
ť

S ey dS.

(c) Compute the flux integral
ť

S F ¨ n̂ dS where F = (x, 0, z).

Q[31](˚): Compute the net outward flux of the vector field

F =
r
|r| =

x ı̂ıı + y ̂ + z k̂
a

x2 + y2 + z2

across the boundary of the region between the spheres of radius 1 and radius 2 centred at
the origin.

Q[32](˚): Evaluate the surface integral
ť

S z2 dS where S is the part of the cone x2 + y2 =

4z2 where 0 ď x ď y and 0 ď z ď 1.

Q[33](˚): Compute the flux integral
ť

S F ¨ n̂ dS, where

F =
(
´ 1

2
x3 ´ xy2 , ´1

2
y3 , z2

)

and S is the part of the paraboloid z = 5´ x2 ´ y2 lying inside the cylinder x2 + y2 ď 4,
with orientation pointing downwards.

Q[34](˚): Let the thin shell S consist of the part of the surface z2 = 2xy with x ě 1, y ě 1
and z ď 2. Find the mass of S if it has surface density given by ρ(x, y, z) = 3z kg per unit
area.

Q[35](˚): Let S be the portion of the paraboloid x = y2 + z2 that satisfies x ď 2y. Its unit
normal vector n̂ is so chosen that n̂ ¨ ı̂ıı ą 0. Find the flux of F = 2 ı̂ıı + z ̂ + y k̂ out of S.

Q[36](˚): Let S denote the portion of the paraboloid z = 1´ 1
4 x2 ´ y2 for which z ě 0.

Orient S so that its unit normal has a positive k̂ component. Let

F(x, y, z) = (3y2 + z) ı̂ıı + (x´ x2) ̂ + k̂

Evaluate the surface integral
ť

S∇ˆ F ¨ n̂ dS.

Q[37]: Let S be the boundary of the apple core bounded by the sphere x2 + y2 + z2 = 16
and the hyperboloid x2 + y2 ´ z2 = 8. Find the flux integral

ť

S F ¨ n̂ dS where F =

x ı̂ıı + y ̂ + z k̂ and n̂ is the outward normal to the surface S.
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§§ Stage 3

Q[38](˚):
(a) Consider the surface S given by the equation

x2 + z2 = cos2 y

Find an equation for the tangent plane to S at the point
(1

2 , π
4 , 1

2

)
.

(b) Compute the integral
ĳ

S

sin y dS

where S is the part of the surface from (a) lying between the planes y = 0 and y = 1
2 π.

Q[39](˚): Let f be a function on R3 such that all its first order partial derivatives are
continuous. Let S be the surface

 

(x, y, z)
ˇ

ˇ f (x, y, z) = c
(

for some c P R. Assume that
∇∇∇ f ‰ 0 on S. Let F be the gradient field F =∇∇∇ f .

(a) Let C be a piecewise smooth curve contained in S (not necessarily closed). Must it be
true that

ş

C F ¨ dr = 0? Explain why.

(b) Prove that for any vector field G,
ĳ

S

(FˆG) ¨ n̂ dS = 0.

Q[40](˚):
(a) Give parametric descriptions of the form r(u, v) =

(
x(u, v) , y(u, v) , z(u, v)

)
for the

following surfaces. Be sure to state the domains of your parametrizations.

(i) The part of the plane 2x + 4y + 3z = 16 in the first octant
 

(x, y, z)
ˇ

ˇ x ě 0, y ě 0, z ě 0
(

(ii) The cap of the sphere x2 + y2 + z2 = 16 for 4/
?

2 ď z ď 4.

(iii) The hyperboloid z2 = 1 + x2 + y2 for 1 ď z ď 10.

(b) Use your parametrization from part (a) to compute the surface area of the cap of the
sphere x2 + y2 + z2 = 16 for 4/

?
2 ď z ď 4.

Q[41](˚): Let S be the part of the sphere x2 + y2 + z2 = 2 where y ě 1, oriented away
from the origin.

(a) Compute
ĳ

S

y3 dS
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(b) Compute
ĳ

S

(
xy ı̂ıı + xz ̂ + zy k̂

) ¨ n̂ dS

Q[42](˚): Let S be the part of the surface (x + y + 1)2 + z2 = 4 which lies in the first
octant. Find the flux of F downwards through S where

F = xy ı̂ıı + (z´ xy) ̂
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Chapter 4

4.1Ĳ Gradient, Divergence and Curl

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1](˚): Let F = P ı̂ıı + Q ̂ be the two dimensional vector field shown below.

(a) Assuming that the vector field in the picture is a force field, the work done by the
vector field on a particle moving from point A to B along the given path is:

(A) Positive

(B) Negative

(C) Zero

(D) Not enough information to determine.

(b) Which statement is the most true about the line integral
ş

C2
F ¨ dr:

(A)
ş

C2
F ¨ dr ą 0

(B)
ş

C2
F ¨ dr = 0

(C)
ş

C2
F ¨ dr ă 0

(D) Not enough information to determine.
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x

y

Q

D

G
B

A

N

C2

(c) ∇∇∇ ¨ F at the point N (in the picture) is:

(A) Positive

(B) Negative

(C) Zero

(D) Not enough information to determine.

(d) Qx ´ Py at the point Q is:

(A) Positive

(B) Negative

(C) Zero

(D) Not enough information to determine.

(e) Assuming that F = P ı̂ıı + Q ̂, which of the following statements is correct about BP
Bx at

the point D?

(A) BP
Bx = 0 at D.

(B) BP
Bx ą 0 at D.

(C) BP
Bx ă 0 at D.

(D) The sign of BP
Bx at D can not be determined by the given information.
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Q[2]: Does∇∇∇ˆ F have to be perpendicular to F?

Q[3]: Verify the vector identities

(a) ∇∇∇ ¨ ( f F) = f∇∇∇ ¨ F + F ¨∇∇∇ f

(b) ∇∇∇ ¨ (FˆG) = G ¨ (∇∇∇ˆ F)´ F ¨ (∇∇∇ˆG)

(c) ∇∇∇2( f g) = f ∇∇∇2g + 2∇∇∇ f ¨∇∇∇g + g∇∇∇2 f

§§ Stage 2

Q[4]: Evaluate∇∇∇ ¨ F and∇∇∇ˆ F for each of the following vector fields.

(a) F = x ı̂ıı + y ̂ + z k̂

(b) F = xy2ı̂ıı´ yz2 ̂ + zx2k̂

(c) F = xı̂ıı+ŷ?
x2+y2 (the polar basis vector r̂ in 2d)

(d) F = ´yı̂ıı+x̂?
x2+y2 (the polar basis vector θ̂θθ in 2d)

Q[5](˚):
(a) Compute and simplify∇∇∇ ¨ ( r

r
)

for r = (x, y, z) and r = |(x, y, z)|. Express your answer
in terms of r.

(b) Compute∇∇∇ˆ (yz ı̂ıı + 2xz ̂ + exy k̂
)
.

Q[6](˚): In the following, we use the notation r = x ı̂ıı + y ̂ + z k̂, r = |r|, and k is some
number k = 0, 1,´1, 2,´2, . . . .

(a) Find the value k for which
∇∇∇(rk) = ´3

r
r5

(b) Find the value k for which
∇∇∇ ¨ (rkr) = 5r2

(c) Find the value k for which

∇∇∇2(rk) =
2
r4

Q[7](˚): Let r be the vector field r = x ı̂ıı + y ̂ + z k̂ and let r be the function r = |r|. Let a
be the constant vector a = a1 ı̂ıı + a2 ̂ + a3 k̂. Compute and simplify the following
quantities. Answers must be expressed in terms of a, r, and r. There should be no x’s, y’s,
or z’s in your answers.

(a) ∇∇∇ ¨ r
(b) ∇∇∇(r2)

(c) ∇∇∇ˆ (rˆ a)
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(d) ∇∇∇ ¨ (∇∇∇(r))

Q[8](˚): Let
r = x ı̂ıı + y ̂ + z k̂, r = |r|

(a) Compute a where∇∇∇
(1

r
)
= ´ra r.

(b) Compute a where∇∇∇ ¨ (r r
)
= ar.

(c) Compute a where∇∇∇ ¨ (∇∇∇(r3)
)
= ar.

Q[9]: Find, if possible, a vector field A that has k̂ component A3 = 0 and that is a vector
potential for

(a) F = (1 + yz)ı̂ıı + (2y + zx)̂ + (3z2 + xy)k̂

(b) G = yzı̂ıı + zx̂ + xyk̂

§§ Stage 3

Q[10](˚): Let

F =
´z

x2 + z2 ı̂ıı + y ̂ +
x

x2 + z2 k̂

(a) Determine the domain of F.

(b) Determine the curl of F. Simplify if possible.

(c) Determine the divergence of F. Simplify if possible.

(d) Is F conservative? Give a reason for your answer.

Q[11](˚): A physicist studies a vector field F in her lab. She knows from theoretical
considerations that F must be of the form F = ∇ˆG, for some smooth vector field G.
Experiments also show that F must be of the form

F(x, y, z) = (xz + xy)ı̂ıı + α(yz´ xy)̂ + β(yz + xz)k̂

where α and β are constant.

(a) Determine α and β.

(b) Further experiments show that G = xyzı̂ıı´ xyẑ + g(x, y, z)k̂. Find the unknown
function g(x, y, z).

Q[12]: A rigid body rotates at an angular velocity of Ω rad/sec about an axis that passes
through the origin and has direction â. When you are standing at the head of â looking
towards the origin, the rotation is counterclockwise. Set ΩΩΩ = Ωâ.

(a) Show that the velocity of the point r = (x, y, z) on the body is ΩΩΩˆ r.

(b) Evaluate∇∇∇ˆ (ΩΩΩˆ r) and∇∇∇ ¨ (ΩΩΩˆ r), treating ΩΩΩ as a constant.
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(c) Find the speed of the students in a classroom located at latitude 49˝ N due to the
rotation of the Earth. Ignore the motion of the Earth about the Sun, the Sun in the
Galaxy and so on. The radius of the Earth is 6378 km.

Q[13]: Suppose that the vector field F obeys∇∇∇ ¨ F = 0 in all of R3. Let

r(t) = tx ı̂ıı + ty ̂ + tz k̂, 0 ď t ď 1

be a parametrization of the line segment from the origin to (x, y, z). Define

G(x, y, z) =
ż 1

0
t F
(
r(t)

)ˆ dr
dt
(t) dt

Show that∇∇∇ˆG = F throughout R3.

4.2Ĳ The Divergence Theorem

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Let V be the cube

V =
 

(x, y, z)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1, 0 ď z ď 1
(

and R be the square

R =
 

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1
(

and let f (x, y, z) have continuous first partial derivatives.

(a) Use the fundamental theorem of calculus to show that

¡

V

B f
Bz

(x, y, z) dx dy dz =

ĳ

R

f (x, y, 1) dx dy´
ĳ

R

f (x, y, 0) dx dy

(b) Use the divergence theorem to show that

¡

V

B f
Bz

(x, y, z) dx dy dz =

ĳ

R

f (x, y, 1) dx dy´
ĳ

R

f (x, y, 0) dx dy
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Q[2]:

(a) By applying the divergence theorem to F = φ a, where a is an arbitrary constant
vector, show that

¡

V

∇∇∇φ dV =

ĳ

BV

φ n̂ dS

(b) Show that the centroid (x̄, ȳ, z̄) of a solid V with volume |V| is given by

(x̄, ȳ, z̄) =
1

2|V|
ĳ

BV

(x2 + y2 + z2) n̂ dS

§§ Stage 2

Q[3]: Let S be the unit sphere centered at the origin and oriented by the outward
pointing normal. If

F(x, y, z) =
(
x, y, z2)

evaluate the flux of F through S

(a) directly and

(b) by applying the divergence theorem.

Q[4]: Evaluate, by two methods, the integral
ť

S F ¨ n̂ dS, where F = z k̂, S is the surface
x2 + y2 + z2 = a2 and n̂ is the outward pointing unit normal to S.

(a) First, by direct computation of the surface integral.

(b) Second, by using the divergence theorem.

Q[5]: Let

• F = zy3 ı̂ıı + yx ̂ + (2z + y2)k̂ and
• V be the solid in 3-space defined by

0 ď z ď 9´ x2 ´ y2

9 + x2 + y2

and
• D be the bottom surface of V. Because 9´x2´y2

9+x2+y2 is positive for x2 + y2 ă 9 and

negative for x2 + y2 ą 9, the bottom surface is z = 0, x2 + y2 ď 9.

• Let S be the curved portion of the boundary of V. It is z = 9´x2´y2

9+x2+y2 , x2 + y2 ď 9.
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z

y

x

z = 9−x2−y2

9+x2+y2

x2 + y2 = 9D

S

Denote by |V| the volume of V and compute, in terms of |V|,

(a)
ĳ

D

F ¨ n̂ dS with n̂ pointing downward

(b)
¡

V

∇∇∇ ¨ F dV

(c)
ĳ

S

F ¨ n̂ dS with n̂ pointing outward

Use the divergence theorem to answer at least one of parts (a), (b) and (c).

Q[6]: Evaluate the integral
ť

S F ¨ n̂ dS, where F = (x, y, 1) and S is the surface
z = 1´ x2 ´ y2, for x2 + y2 ď 1, by two methods.

(a) First, by direct computation of the surface integral.

(b) Second, by using the divergence theorem.

Q[7](˚):
(a) Find the divergence of the vector field F = (z + sin y, zy, sin x cos y).

(b) Find the flux of the vector field F of (a) through the sphere of radius 3 centred at the
origin in R3 .

Q[8]: The sides of a grain silo are described by the portion of the cylinder x2 + y2 = 1
with 0 ď z ď 1. The top of the silo is given by the portion of the sphere x2 + y2 + z2 = 2
lying within the cylinder and above the xy-plane. Find the flux of the vector field

V(x, y, z) = (x2yz , yz + exz , x2 + y)

out of the silo.

Q[9]: Let B be the ball of volume V centered at the point (x0, y0, z0), and let S be the sphere
that is the boundary of B. Find the flux of F = x2ı̂ıı + xŷ + (3z´ yz)k̂ outward (from B)
through S.

Q[10](˚): Let

F(x, y, z) =
(
1 + z1+z1+z

, 1 + z1+z1+z
, 1
)
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Let S be the portion of the surface

x2 + y2 = 1´ z4

which is above the xy-plane. What is the flux of F downward through S?

Q[11](˚): Use the divergence theorem to find the flux of xı̂ıı + ŷ + 2zk̂ through the part of
the ellipsoid

x2 + y2 + 2z2 = 2

with z ě 0. [Note: the ellipsoid x2

a2 +
y2

b2 +
z2

c2 = 1 has volume 4
3 πabc.]

Q[12](˚): Let F(x, y, z) = r/r3 where r = x ı̂ıı + y ̂ + z k̂ and r = |r|.
(a) Find∇∇∇ ¨ F.

(b) Find the flux of F outwards through the spherical surface x2 + y2 + z2 = a2.

(c) Do the results of (a) and (b) contradict the divergence theorem? Explain your answer.

(d) Let E be the solid region bounded by the surfaces z2 ´ x2 ´ y2 + 1 = 0, z = 1 and
z = ´1. Let σ be the bounding surface of E. Determine the flux of F outwards
through σ.

(e) Let R be the solid region bounded by the surfaces z2´ x2´ y2 + 4y´ 3 = 0, z = 1 and
z = ´1. Let Σ be the bounding surface of R. Determine the flux of F outwards
through Σ.

Q[13](˚): Consider the ellipsoid S given by

x2 +
y2

4
+

z2

4
= 1

with the unit normal pointing outward.

(a) Parameterize S.

(b) Compute the flux
ť

S F ¨ n̂ dS of the vector field

F(x, y, z) = (x, y, z)

(c) Verify your answer in (b) using the divergence theorem.

Q[14](˚): Evaluate the flux integral
ť

S F ¨ n̂ dS, where

F(x, y, z) =
(
x3 + cos(y2) , y3 + zex , z2 + arctan(xy)

)

and S is the surface of the solid region bounded by the cylinder x2 + y2 = 2 and the planes
z = 0 and z = 2x + 3. The surface is positively oriented (its unit normal points outward).

Q[15](˚): Find the flux of the vector field (x+ y, x+ z, y+ z) through the cylindrical surface
whose equation is x2 + z2 = 4, and which extends from y = 0 to y = 3. (Only the curved
part of the cylinder is included, not the two disks bounding it on the left and right.) The
orientation of the surface is outward, i.e., pointing away from the y-axis.
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Q[16](˚): The surface S is the part above the xy-plane of the surface obtained by
revolving the graph of z = 1´ x4 around the z-axis. The surface S is oriented such that
the normal vector has positive z-component. The circle with radius 1 and centre at the
origin in the xy-plane is the boundary of S.

Find the flux of the divergenceless vector field F(x, y, z) = (yz, x + z, x2 + y2) through S.

Q[17](˚):
Let S be the part of the paraboloid z = 2´ x2 ´ y2 contained in the cone z =

a

x2 + y2

and oriented in the upward direction. Let

F = (tan
?

z + sin(y3)) ı̂ıı + e´x2
̂ + zk̂

Evaluate the flux integral
ť

S F ¨ n̂ dS.

Q[18](˚): Evaluate the surface integral
ĳ

S

F ¨ n̂ dS

where F(x, y, z) =
(

cos z + xy2 , xe´z , sin y + x2z
)

and S is the boundary of the solid
region enclosed by the paraboloid z = x2 + y2 and the plane z = 4, with outward pointing
normal.

Q[19](˚): Let S be the part of the sphere x2 + y2 + z2 = 4 between the planes z = 1 and
z = 0 oriented away from the origin. Let

F = (ey + xz) ı̂ıı + (zy + tan(x)) ̂ + (z2 ´ 1) k̂

Compute the flux integral
ĳ

S

F ¨ n̂ dS.

Q[20](˚): Let B be the solid region lying between the planes x = ´1, x = 1, y = 0, y = 2
and bounded below by the plane z = 0 and above by the plane z + y = 3. Let S be the
surface of B. Find the flux of the vector field

F(x, y, z) =
(
x2z + cos πy

)
ı̂ıı +
(
yz + sin πz

)
̂ + (x´ y2) k̂

Q[21](˚): Let S be the hemisphere x2 + y2 + z2 = 1, z ě 0, oriented with n̂ pointing away
from the origin. Evaluate the flux integral

ĳ

S

F ¨ n̂ dS

where
F =

(
x + cos(z2)

)
ı̂ıı +
(
y + ln(x2 + z5)

)
̂ +

b

x2 + y2 k̂
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Q[22](˚): Let E be the solid region between the plane z = 4 and the paraboloid
z = x2 + y2. Let

F =
(
´ 1

3
x3 + ez2

)
ı̂ıı +
(
´ 1

3
y3 + x tan z

)
̂ + 4zk̂

(a) Compute the flux of F outward through the boundary of E.

(b) Let S be the part of the paraboloid z = x2 + y2 lying below the z = 4 plane oriented
so that n̂ has a positive k̂ component. Compute the flux of F through S.

Q[23](˚): Consider the vector field

F(x, y, z) =
x ı̂ıı + y ̂ + z k̂

[x2 + y2 + z2
]3/2

(a) Compute∇∇∇ ¨ F.

(b) Let S1 be the sphere given by

x2 + (y´ 2)2 + z2 = 9

oriented outwards. Compute
ĳ

S1

F ¨ n̂ dS.

(c) Let S2 be the sphere given by

x2 + (y´ 2)2 + z2 = 1

oriented outwards. Compute
ĳ

S2

F ¨ n̂ dS.

(d) Are your answers to (b) and (c) the same or different? Give a mathematical
explanation of your answer.

Q[24](˚): Let F be the vector field defined by

F(x, y, z) =
(
y3z + 2x

)
ı̂ıı +
(
3y´ esin z) ̂ +

(
ex2+y2

+ z
)

k̂

Calculate the flux integral
ť

S F ¨ n̂ dS where S is the boundary surface of the solid region

E : 0 ď x ď 2, 0 ď y ď 2, 0 ď z ď 2 + y

with outer normal.

Q[25](˚): Consider the vector field

F(x, y, z) =
(
z arctan(y2) , z3 ln(x2 + 1) , 3z

)

Let the surface S be the part of the sphere x2 + y2 + z2 = 4 that lies above the plane z = 1
and be oriented downwards.

(a) Find the divergence of F.
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(b) Compute the flux integral
ť

S F ¨ n̂ dS.

Q[26](˚): Let S be the sphere x2 + y2 + z2 = 3 oriented inward. Compute the flux integral
ĳ

S

F ¨ n̂ dS

where
F =

(
xy2 + y4z6 , yz2 + x4z , zx2 + xy4)

Q[27](˚): Consider the vector field F(x, y, z) = ´2xy ı̂ıı +
(
y2 + sin(xz)

)
̂ + (x2 + y2) k̂.

(a) Calculate ∇ ¨ F.

(b) Find the flux of F through the surface S defined by

x2 + y2 + (z´ 12)2 = 132, z ě 0

using the outward normal to S.

Q[28](˚): Let S be the portion of the hyperboloid x2 + y2 ´ z2 = 1 between z = ´1 and
z = 1. Find the flux of F = (x + eyz) ı̂ıı +

(
2yz + sin(xz)

)
̂ + (xy´ z´ z2) k̂ out of S (away

from the origin).

Q[29](˚): Let F be the vector field F(x, y, z) = (x2 ´ y´ 1) ı̂ıı + (ecos y + z3) ̂ + (2xz + z5) k̂.
Evaluate

ť

S∇∇∇ˆ F ¨ n̂ dS where S is the part of the ellipsoid x2 + y2 + 2z2 = 1 with z ě 0.

Q[30](˚): Let S be the portion of the sphere x2 + y2 + (z ´ 1)2 = 4 that lies above the
xy-plane. Find the flux of F = (x2 + ey2

) ı̂ıı + (ex2
+ y2) ̂ + (4 + 5x) k̂ outward across S.

Q[31](˚): Find the flux of F = xy2ı̂ıı + x2ŷ + k̂ outward through the hemispherical surface

x2 + y2 + z2 = 4, z ě 0

Q[32](˚): Let D be the cylinder x2 + y2 ď 1, 0 ď z ď 5. Calculate the flux of the vector field

F = (x + xyez) ı̂ıı + 1
2 y2zez ̂ + (3z´ yzez) k̂

outward through the curved part of the surface of D.

Q[33]: Find the flux of F = (y + xz)ı̂ıı + (y + yz)̂ ´ (2x + z2)k̂ upward through the first
octant part of the sphere x2 + y2 + z2 = a2.

Q[34]: Let F = (x´ yz)ı̂ıı + (y + xz)̂ + (z + 2xy)k̂ and let

• S1 be the portion of the cylinder x2 + y2 = 2 that lies inside the sphere
x2 + y2 + z2 = 4

• S2 be the portion of the sphere x2 + y2 + z2 = 4 that lies outside the cylinder
x2 + y2 = 2

• V be the solid bounded by S1 and S2

Compute
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(a)
ť

S1
F ¨ n̂ dS with n̂ pointing inward

(b)
ţ

V∇∇∇ ¨ F dV

(c)
ť

S2
F ¨ n̂ dS with n̂ pointing outward

Use the divergence theorem to answer at least one of parts (a), (b) and (c).

§§ Stage 3

Q[35]: Let E(r) be the electric field due to a charge configuration that has density ρ(r).
Gauss’ law states that, if V is any solid in R3 with surface BV, then the electric flux

ĳ

BV

E ¨ n̂ dS = 4πQ where Q =

¡

V

ρ dV

is the total charge in V. Here, as usual, n̂ is the outward pointing unit normal to BV.
Show that

∇∇∇ ¨ E(r) = 4πρ(r)

for all r in R3. This is one of Maxwell’s equations. Assume that ∇∇∇ ¨ E(r) and ρ(r) are
well–defined and continuous everywhere.

Q[36]: Let V be a solid in R3 with surface BV. Show that
ĳ

BV

r ¨ n̂ dS = 3 Volume(V)

where r = x ı̂ıı + y ̂ + z k̂ and, as usual, n̂ is the outer normal to BV. See if you can explain
this result geometrically.

Q[37](˚): Let S be the sphere of radius 3, centered at the origin and with outward
orientation. Given the vector field F(x, y, z) = (0, 0, x + z):

(a) Calculate (using the definition) the flux of F through S
ĳ

S

F ¨ n̂ dS

That is, compute the flux by evaluating the surface integral directly.

(b) Calculate the same flux using the divergence theorem.

Q[38](˚): Consider the cube of side length 1 that lies entirely in the first octant (x ě 0,
y ě 0, z ě 0) with one corner at the origin and another corner at point (1, 1, 1). As such,
one face lies in the plane x = 0, one lies in the plane y = 0, and another lies in the plane
z = 0. The other three faces lie in the planes x = 1, y = 1, and z = 1. Denote S as the
open surface that consists of the union of the 5 faces of the cube that do not lie in the
plane z = 0. The surface S is oriented in such a way that the unit normal vectors point
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outwards (that is, the orientation of S is such that the unit normal vectors on the top face
point towards positive z-directions). Determine the value of

I =
ĳ

S

F ¨ n̂ dS

where F is the vector field given by

F =

(
y cos(y2) + z´ 1 ,

z
x + 1

+ 1 , xyez2
)

Q[39](˚):
(a) Find an upward pointing unit normal vector to the surface z = xy at the point

(1, 1, 1).

(b) Now consider the part of the surface z = xy, which lies within the cylinder
x2 + y2 = 9 and call it S. Compute the upward flux of F = (y, x, 3) through S.

(c) Find the flux of F = (y, x, 3) through the cylindrical surface x2 + y2 = 9 in between
z = xy and z = 10. The orientation is outward, away from the z-axis.

Q[40](˚):
(a) Find the divergence of the vector field F = (x + sin y, z + y, z2).

(b) Find the flux of F through the upper hemisphere x2 + y2 + z2 = 25, z ě 0, oriented in
the positive z-direction.

(c) Specify an oriented closed surface S, such that the flux
ť

S F ¨ n̂ dS is equal to ´9.

Q[41](˚): Evaluate the surface integrals. (Use any method you like.)

(a)
ť

S z2 dS, if S is the part of the cone x2 + y2 = 4z2 where 0 ď x ď y and 0 ď z ď 1.

(b)
ť

S F ¨ n̂ dS, if F = zk̂ and S is the rectangle with vertices (0, 2, 0), (0, 0, 4), (5, 2, 0),
(5, 0, 4), oriented so that the normal vector points upward.

(c)
ť

S F ¨ n̂ dS, where F = (y´ z2)ı̂ıı + (z´ x2)̂ + z2k̂ and S is the boundary surface of the
box 0 ď x ď 1, 0 ď y ď 2, 0 ď z ď 3, with the normal vector pointing outward.

Q[42](˚): Let σ1 be the open surface given by z = 1´ x2 ´ y2, z ě 0. Let σ2 be the open
surface given by z = x2 + y2 ´ 1, z ď 0. Let σ3 be the planar surface given by z = 0,
x2 + y2 ď 1. Let F = [a(y2 + z2) + bxz] ı̂ıı + [c(x2 + z2) + dyz] ̂ + x2 k̂ where a, b, c, and d
are constants.

(a) Find the flux of F upwards across σ1.

(b) Find all values of the constants a, b, c, and d so that the flux of F outwards across the
closed surface σ1 Y σ3 is zero.

(c) Find all values of the constants a, b, c, and d so that the flux of F outwards across the
closed surface σ1 Y σ2 is zero.

Q[43](˚): Let S be the ellipsoid x2 + 2y2 + 3z2 = 16 and n̂ its outward unit normal.
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(a) Find
ť

S F ¨ n̂ dS if F(x, y, z) =
(x, y, z)´ (2, 1, 1)

[
(x´ 2)2 + (y´ 1)2 + (z´ 1)2

]3/2 .

(b) Find
ť

S G ¨ n̂ dS if G(x, y, z) =
(x, y, z)´ (3, 2, 2)

[
(x´ 3)2 + (y´ 2)2 + (z´ 2)2

]3/2 .

Q[44](˚): Let Ω Ă R3 be a smoothly bounded domain, with boundary BΩ and outer unit
normal n̂. Prove that for any vector field F which is continuously differentiable in
ΩY BΩ,

¡

Ω

∇∇∇ˆ F dV = ´
ĳ

BΩ

Fˆ n̂ dS

Q[45](˚): Recall that if S is a smooth closed surface with outer normal field n̂, then for
any smooth function p(x, y, z) on R3, we have

ĳ

S

pn̂ ds =
¡

E

∇p dV

where E is the solid bounded by S. Show that as a consequence, the total force exerted on
the surface of a solid body contained in a gas of constant pressure is zero. (Recall that the
pressure acts in the direction normal to the surface.)

Q[46](˚): Let F be a smooth 3-dimensional vector field such that the flux of F out of the
sphere x2 + y2 + z2 = a2 is equal to π(a3 + 2a4) for every a ą 0. Calculate∇∇∇ ¨ F(0, 0, 0).

Q[47](˚): Let F = (x2 + y2 + z2) ı̂ıı + (ex2
+ y2) ̂ + (3 + x + z) k̂ and let S be the part of the

surface x2 + y2 + z2 = 2az + 3a2 having z ě 0, oriented with normal pointing away from
the origin. Here a ą 0 is a constant. Compute the flux of F through S.

Q[48](˚): Let u = u(x, y, z) be a solution of Laplace’s Equation,

B2u
Bx2 +

B2u
By2 +

B2u
Bz2 = 0,

in R3. LetR be a smooth solid in R3.

(a) Prove that the total flux of F = ∇u out through the boundary ofR is zero.

(b) Prove that the total flux of G = u∇u out through the boundary ofR equals
¡

R

[(Bu
Bx

)2
+
(Bu
By

)2
+
(Bu
Bz

)2]
dV

Q[49](˚): LetR be the part of the solid cylinder x2 + (y´ 1)2 ď 1 satisfying 0 ď z ď y2; let
S be the boundary ofR. Given F = x2 ı̂ıı + 2y ̂´ 2z k̂,

(a) Find the total flux of F outward through S .

(b) Find the total flux of F outward through the (vertical) cylindrical sides of S .

Hint:
ż π

0
sinn θ dθ =

n´ 1
n

ż π

0
sinn´2 θ dθ for n = 2, 3, 4, . . ..
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Q[50](˚): A smooth surface S lies above the plane z = 0 and has as its boundary the circle
x2 + y2 = 4y in the plane z = 0. This circle also bounds a disk D in that plane. The
volume of the 3-dimensional region R bounded by S and D is 10 cubic units. Find the
flux of

F(x, y, z) = (x + x2y)ı̂ıı + (y´ xy2)̂ + (z + 2x + 3y)k̂

through S in the direction outward from R.

4.3Ĳ Green’s Theorem

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Let R be the square

R =
 

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1
(

and let f (x, y) have continuous first partial derivatives.

(a) Use the fundamental theorem of calculus to show that
ĳ

R

B f
By

(x, y) dx dy =

ż 1

0
f (x, 1) dx´

ż 1

0
f (x, 0) dx

(b) Use Green’s theorem to show that
ĳ

R

B f
By

(x, y) dx dy =

ż 1

0
f (x, 1) dx´

ż 1

0
f (x, 0) dx

Q[2]: Let R be a finite region in the xy-plane, whose boundary, C, consists of a single,
piecewise smooth, simple closed curve that is oriented couterclockwise. “Simple” means
that the curve does not intersect itself. Use Green’s theorem to show that

ĳ

R

∇∇∇ ¨ F dx dy =

¿

C

F ¨ n̂ ds

where F = F1 ı̂ıı + F2 ̂, n̂ is the outward unit normal to C and s is the arclength along C.

C

R
n̂

x

y
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So, by Green’s theorem,
¿

C

F ¨ n̂ ds =
¿

C

[
F1

dy
ds
´ F2

dx
ds

]
ds =

¿

C

[´F2 dx + F1 dy] =
ĳ

R

[ B
Bx

F1 ´ B
By

(´F2)

]
dx dy

=

ĳ

R

∇∇∇ ¨ F dx dy

Q[3]: Integrate
1

2π

¿

C

x dy´ y dx
x2 + y2 counterclockwise around

(a) the circle x2 + y2 = a2

(b) the boundary of the square with vertices (´1,´1), (´1, 1), (1, 1) and (1,´1)

(c) the boundary of the region 1 ď x2 + y2 ď 2, y ě 0

Q[4]: Show that

B
Bx

( x
x2 + y2

)
=
B
By

( ´y
x2 + y2

)

for all (x, y) ‰ (0, 0). Discuss the connection between this result and the results of Q[3].

§§ Stage 2

Q[5]: Evaluate
ş

C F ¨ dr where F = x2y2 ı̂ıı + 2xy ̂ and C is the boundary of the square in
the xy-plane having one vertex at the origin and diagonally opposite vertex at the point
(3, 3), oriented counterclockwise.

Q[6]: Evaluate
¿

C

(x sin y2 ´ y2)dx + (x2y cos y2 + 3x)dy where C is the counterclockwise

boundary of the trapezoid with vertices (0,´2), (1,´1), (1, 1) and (0, 2).

Q[7](˚): Evaluate I =
¿

C

(1
3

x2y3´ x4y
)

dx +
(
xy4 + x3y2)dy counterclockwise around the

boundary of the half-disk 0 ď y ď ?4´ x2.

Q[8](˚): Let C be the counterclockwise boundary of the rectangle with vertices (1, 0),
(3, 0), (3, 1) and (1, 1). Evaluate

¿

C

(
3y2 + 2xey2)

dx +
(
2yx2ey2)

dy

Q[9](˚): Consider the closed region enclosed by the curves y = x2 + 4x + 4 and
y = 4´ x2. Let C be its boundary and suppose that C is oriented counter-clockwise.

(a) Draw the oriented curve C carefully in the xy-plane.
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(b) Determine the value of
¿

C

xy dx + (ey + x2)dy

Q[10](˚): Let

F(x, y) =
(
y2 ´ e´y2

+ sin x , 2xye´y2
+ x
)

Let C be the boundary of the triangle with vertices (0, 0), (1, 0) and (1, 2), oriented
counter-clockwise. Compute

ż

C
F ¨ dr

Q[11](˚): Suppose the curve C is the boundary of the region enclosed between the curves
y = x2 ´ 4x + 3 and y = 3´ x2 + 2x. Determine the value of the line integral

ż

C

(
2xey +

a

2 + x2
)

dx + x2(2 + ey)dy

where C is traversed counter-clockwise.

Q[12](˚): Let

F(x, y) =
(3

2 y2 + e´y + sin x
)

ı̂ıı +
(1

2 x2 + x´ xe´y) ̂

Find
ş

C F ¨ dr, where C is the boundary of the triangle (0, 0), (1,´2), (1, 2), oriented
anticlockwise.

Q[13](˚):
(a) Use Green’s theorem to evaluate the line integral

ż

C

´y
x2 + y2 dx +

x
x2 + y2 dy

where C is the arc of the parabola y = 1
4 x2 + 1 from (´2, 2) to (2, 2).

(b) Use Green’s theorem to evaluate the line integral
ż

C

´y
x2 + y2 dx +

x
x2 + y2 dy

where C is the arc of the parabola y = x2 ´ 2 from (´2, 2) to (2, 2).

(c) Is the vector field

F =
´y

x2 + y2 ı̂ıı +
x

x2 + y2 ̂

conservative? Provide a reason for your answer based on your answers to the
previous parts of this question.
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Q[14](˚): Suppose the curve C is the boundary of the region enclosed between the curves
y = x2 ´ 4x + 3 and y = 3´ x2 + 2x. Determine the value of the line integral

ż

C

(
2xey +

?
2 + x2)dx + x2(2 + ey)dy

where C is traversed counter-clockwise.

Q[15](˚): Let F(x, y) = P ı̂ıı + Q ̂ be a smooth plane vector field defined for (x, y) ‰ (0, 0),
and suppose Qx = Py for (x, y) ‰ (0, 0). In the following Ij =

ş

Cj
F ¨ dr for integer j, and

all Cj are positively oriented circles. Suppose I1 = π where C1 is the circle x2 + y2 = 1.

(a) Find I2 for C2 : (x´ 2)2 + y2 = 1. Explain briefly.

(b) Find I3 for C3 : (x´ 2)2 + y2 = 9. Explain briefly.

(c) Find I4 for C4 : (x´ 2)2 + (y´ 2)2 = 9. Explain briefly.

Q[16](˚): Consider the vector field F = P ı̂ıı + Q ̂, where

P =
x + y

x2 + y2 , Q =
y´ x

x2 + y2

(a) Compute and simplify Qx ´ Py.

(b) Compute the integral
ş

CR
F ¨ dr directly using a parameterization, where CR is the

circle of radius R, centered at the origin, and oriented in the counterclockwise
direction.

(c) Is F conservative? Carefully explain how your answer fits with the results you got in
the first two parts.

(d) Use Green’s theorem to compute
ş

C F ¨ dr where C is the triangle with vertices (1, 1),
(1, 0), (0, 1) oriented in the counterclockwise direction.

(e) Use Green’s theorem to compute
ş

C F ¨ dr where C is the triangle with vertices
(´1,´1), (1, 0), (0, 1) oriented in the counterclockwise direction.

Q[17](˚):
(a) Evaluate

ż

C

a

1 + x3 dx +
(
2xy2 + y2)dy

where C is the unit circle x2 + y2 = 1, oriented counterclockwise.

(b) Evaluate
ż

C

a

1 + x3 dx +
(
2xy2 + y2)dy

where C is now the part of the unit circle x2 + y2 = 1, with x ě 0, still oriented
counterclockwise.
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§§ Stage 3

Q[18](˚): Evaluate the line integral
ż

C
(x2 + yex)dx + (x cos y + ex)dy

where C is the arc of the curve x = cos y for ´π/2 ď y ď π/2, traversed in the direction
of increasing y.

Q[19](˚): Use Green’s theorem to establish that if C is a simple closed curve in the plane,
then the area A enclosed by C is given by

A =
1
2

¿

C

x dy´ y dx

Use this to calculate the area inside the curve x2/3 + y2/3 = 1.

Q[20](˚): Let F(x, y) = (x + 3y) ı̂ıı + (x + y) ̂ and G(x, y) = (x + y) ı̂ıı + (2x´ 3y) ̂ be
vector fields. Find a number A such that for each circle C in the plane

¿

C

F ¨ dr = A
¿

C

G ¨ dr

Q[21](˚): Let F(x, y) = y3

(x2+y2)2 ı̂ıı´ xy2

(x2+y2)2 ̂, (x, y) ‰ (0, 0).

(a) Compute
ű

C F ¨ dr where C is the unit circle in the xy-plane, positively oriented.

(b) Use (a) and Green’s theorem to find
ű

C0
F ¨ dr where C0 is the ellipse x2

16 +
y2

25 = 1,
positively oriented.

Q[22](˚): Let C1 be the circle (x ´ 2)2 + y2 = 1 and let C2 be the circle (x ´ 2)2 + y2 = 9.
Let F = ´ y

x2+y2 ı̂ıı + x
x2+y2 ̂. Find the integrals

ű

C1
F ¨ dr and

ű

C2
F ¨ dr.

Q[23](˚): Let R be the region in the first quadrant of the xy-plane bounded by the
coordinate axes and the curve y = 1´ x2. Let C be the boundary of R, oriented
counterclockwise.

(a) Evaluate
ş

C x ds.

(b) Evaluate
ş

C F ¨ dr, where F(x, y) =
(

sin(x2)´ xy
)

ı̂ıı +
(
x2 + cos(y2)

)
̂.

Q[24](˚): Let C be the curve defined by the intersection of the surfaces z = x + y and
z = x2 + y2.

(a) Show that C is a simple closed curve.

(b) Evaluate
ű

C F ¨ dr where

(i) F = x2 ı̂ıı + y2 ̂ + 3ez k̂.

(ii) F = y2 ı̂ıı + x2 ̂ + 3ez k̂.

73



INTEGRAL THEOREMS 4.4 STOKES’ THEOREM

Q[25]: Find a smooth, simple, closed, counterclockwise oriented curve, C, in the xy-plane
for the which the value of the line integral

ű

C(y
3´ y)dx´ 2x3 dy is a maximum among all

smooth, simple, closed, counterclockwise oriented curves.

4.4Ĳ Stokes’ Theorem

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

§§ Stage 1

Q[1]: Each of the figures below contains a sketch of a surface S and its boundary BS.
Stokes’ theorem says that

ű

BS F ¨ dr =
ť

S∇∇∇ˆ F ¨ n̂ dS if n̂ is a correctly oriented unit
normal vector to S. Add to each sketch a typical such normal vector.

(a)
S

∂S

(b)

S

∂S

(c)

S

∂S

Q[2]: Let

• R be a finite region in the xy-plane,
• the boundary, C, of R consist of a single piecewise smooth, simple closed curve

– that is oriented (i.e. an arrow is put on C) consistently with R in the sense that
if you walk along C in the direction of the arrow, then R is on your left

C

R

x

y

• F1(x, y) and F2(x, y) have continuous first partial derivatives at every point of R.

Use Stokes’ theorem to show that
¿

C

[
F1(x, y)dx + F2(x, y)dy

]
=

ĳ

R

(BF2

Bx
´ BF1

By

)
dxdy

i.e. to show Green’s theorem.

Q[3]: Verify the identity
ű

C φ∇∇∇ψ ¨ dr = ´ ű

C ψ∇∇∇φ ¨ dr for any continuously differentiable
scalar fields φ and ψ and curve C that is the boundary of a piecewise smooth surface.
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§§ Stage 2

Q[4]: Let C be the curve of intersection of the cylinder x2 + y2 = 1 and the surface z = y2

oriented in the counterclockwise direction as seen from (0, 0, 100). Let
F = (x2 ´ y , y2 + x , 1). Calculate

ű

C F ¨ dr

(a) by direct evaluation

(b) by using Stokes’ Theorem.

Q[5]: Evaluate
ű

C F ¨ dr where F = yex ı̂ıı + (x + ex) ̂ + z2 k̂ and C is the curve

r(t) = (1 + cos t) ı̂ıı + (1 + sin t) ̂ + (1´ sin t´ cos t) k̂ 0 ď t ď 2π

Q[6](˚): Find the value of
ť

S∇∇∇ˆ F ¨ n̂ dS where F =
(
z´ y , x , ´x

)
and S is the

hemisphere
 

(x, y, z) P R3 ˇ
ˇ x2 + y2 + z2 = 4, z ě 0

(

oriented so the surface normals point away from the centre of the hemisphere.

Q[7](˚):
Let S be the part of the surface z = 16´ (x2 + y2)

2 which lies above the xy-plane. Let F
be the vector field

F = x ln(1 + z) ı̂ıı + x(3 + y) ̂ + y cos z k̂

Calculate
ĳ

S

∇∇∇ˆ F ¨ n̂ dS

where n̂ is the upward normal on S .

Q[8](˚): Let C be the intersection of the paraboloid z = 4 ´ x2 ´ y2 with the cylinder
x2 + (y ´ 1)2 = 1, oriented counterclockwise when viewed from high on the z-axis. Let
F = xz ı̂ıı + x ̂ + yz k̂. Find

ű

C F ¨ dr.

Q[9]: Let F = ´yez ı̂ıı + x3 cos z ̂ + z sin(xy) k̂, and let S be the part of the surface z =
(1´ x2)(1´ y2) that lies above the square ´1 ď x ď 1, ´1 ď y ď 1 in the xy-plane. Find
the flux of∇∇∇ˆ F upward through S.

Q[10]: Evaluate the integral
ű

C F ¨ dr, in which F = (ex2 ´ yz , sin y´ yz , xz + 2y) and C is
the triangular path from (1, 0, 0) to (0, 1, 0) to (0, 0, 1) to (1, 0, 0).

Q[11](˚): Let F(x, y, z) = ´z ı̂ıı + x ̂ + y k̂ be a vector field. Use Stokes’ theorem to evaluate
the line integral

ű

C F ¨ dr where C is the intersection of the plane z = y and the ellipsoid
x2

4 + y2

2 + z2

2 = 1, oriented counter-clockwise when viewed from high on the z-axis.

Q[12](˚): Consider the vector field F(x, y, z) = z2 ı̂ıı + x2 ̂ + y2 k̂ in R3.

(a) Compute the line integral I1 =
ş

C1
F ¨ dr where C1 is the curve consisting of three line

segments, L1 from (2, 0, 0) to (0, 2, 0), then L2 from (0, 2, 0) to (0, 0, 2), finally L3 from
(0, 0, 2) to (2, 0, 0).
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(b) A simple closed curve C2 lies on the plane E : x + y + z = 2, enclosing a region R on
the plane of area 3, and oriented in a counterclockwise direction as observed from the
positive x-axis. Compute the line integral I2 =

ş

C2
F ¨ dr.

Q[13](˚): Let C = C1 + C2 + C3 be the curve given by the union of the three
parameterized curves

r1(t) =
(
2 cos t, 2 sin t, 0

)
, 0 ď t ď π/2

r2(t) =
(
0, 2 cos t, 2 sin t

)
, 0 ď t ď π/2

r3(t) =
(
2 sin t, 0, 2 cos t

)
, 0 ď t ď π/2

(a) Draw a picture of C. Clearly mark each of the curves C1, C2, and C3 and indicate the
orientations given by the parameterizations.

(b) Find and parameterize an oriented surface S whose boundary is C (with the given
orientations).

(c) Compute the line integral
ş

C F ¨ dr where

F =
(

y + sin(x2) , z´ 3x + ln(1 + y2) , y + ez2
)

Q[14](˚): We consider the cone with equation z =
a

x2 + y2. Note that its tip, or vertex, is
located at the origin (0, 0, 0). The cone is oriented in such a way that the normal vectors
point downwards (and away from the z axis). In the parts below, both S1 and S2 are
oriented this way.

Let F =
(´ zy, zx, xy cos(yz)

)
.

(a) Let S1 be the part of the cone that lies between the planes z = 0 and z = 4. Note that
S1 does not include any part of the plane z = 4. Use Stokes’ theorem to determine the
value of

ĳ

S1

∇∇∇ˆ F ¨ n̂ dS

Make a sketch indicating the orientations of S1 and of the contour(s) of integration.

(b) Let S2 be the part of the cone that lies below the plane z = 4 and above z = 1. Note
that S2 does not include any part of the planes z = 1 and z = 4. Determine the flux of
∇∇∇ˆ F across S2. Justify your answer, including a sketch indicating the orientations of
S2 and of the contour(s) of integration.

Q[15](˚): Consider the curve C that is the intersection of the plane z = x + 4 and the
cylinder x2 + y2 = 4, and suppose C is oriented so that it is traversed clockwise as seen
from above.

Let F(x, y, z) =
(
x3 + 2y , sin(y) + z , x + sin(z2)

)
.

Use Stokes’ Theorem to evaluate the line integral
ű

C F ¨ dr.

Q[16](˚):
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(a) Consider the vector field F(x, y, z) = (z2, x2, y2) in R3. Compute the line integral
ű

C F ¨ dr, where C is the curve consisting of the three line segments, L1 from (2, 0, 0) to
(0, 2, 0), then L2 from (0, 2, 0) to (0, 0, 2), and finally L3 from (0, 0, 2) to (2, 0, 0).

(b) A simple closed curve C lies in the plane x + y + z = 2. The surface this curve C
surrounds inside the plane x + y + z = 2 has area 3. The curve C is oriented in a
counterclockwise direction as observed from the positive x-axis. Compute the line
integral

ű

C F ¨ dr , where F is as in (a).

Q[17](˚): Evaluate the line integral
ż

C

(
z +

1
1 + z

)
dx + xz dy +

(
3xy´ x

(z + 1)2

)
dz

where C is the curve parameterized by

r(t) =
(

cos t , sin t , 1´ cos2 t sin t
)

0 ď t ď 2π

Q[18](˚): A simple closed curve C lies in the plane x + y + z = 1. The surface this curve C
surrounds inside the plane x + y + z = 1 has area 5. The curve C is oriented in a
clockwise direction as observed from the positive z-axis looking down at the plane
x + y + z = 1.

Compute the line integral of F(x, y, z) = (z2, x2, y2) around C.

Q[19](˚): Let C be the oriented curve consisting of the 5 line segments which form the
paths from (0, 0, 0) to (0, 1, 1), from (0, 1, 1) to (0, 1, 2), from (0, 1, 2) to (0, 2, 0), from
(0, 2, 0) to (2, 2, 0), and from (2, 2, 0) to (0, 0, 0). Let

F = (´y + ex sin x) ı̂ıı + y4 ̂ +
?

z tan z k̂

Evaluate the integral
ş

C F ¨ dr.

Q[20](˚): Suppose the curve C is the intersection of the cylinder x2 + y2 = 1 with the
surface z = xy2, traversed clockwise if viewed from the positive z-axis, i.e. viewed “from
above”. Evaluate the line integral

ż

C
(z + sin z)dx + (x3 ´ x2y)dy + (x cos z´ y)dz

Q[21](˚): Evaluate
ť

S∇∇∇ˆ F ¨ n̂ dS where S is that part of the sphere x2 + y2 + z2 = 2
above the plane z = 1, n̂ is the upward unit normal, and

F(x, y, z) = ´y2 ı̂ıı + x3 ̂ +
(
ex + ey + z

)
k̂

Q[22](˚): Let
F = x sin y ı̂ıı´ y sin x ̂ + (x´ y)z2 k̂

Use Stokes’ theorem to evaluate
ż

C
F ¨ dr

along the path consisting of the straight line segments successively joining the points P0 =
(0, 0, 0) to P1 = (π/2, 0, 0) to P2 = (π/2, 0, 1) to P3 = (0, 0, 1) to P4 = (0, π/2, 1) to
P5 = (0, π/2, 0), and back to (0, 0, 0).
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Q[23](˚): Let

F =

(
2z

1 + y
+ sin(x2) ,

3z
1 + x

+ sin(y2) , 5(x + 1)(y + 2)
)

Let C be the oriented curve consisting of four line segments from (0, 0, 0) to (2, 0, 0), from
(2, 0, 0) to (0, 0, 2), from (0, 0, 2) to (0, 3, 0), and from (0, 3, 0) to (0, 0, 0).

(a) Draw a picture of C. Clearly indicate the orientation on each line segment.

(b) Compute the work integral
ş

C F ¨ dr.

Q[24](˚): Evaluate
ĳ

S

∇∇∇ ˆ F ¨ n̂ dS where F = y ı̂ıı + 2z ̂ + 3x k̂ and S is the surface z =

a

1´ x2 ´ y2, z ě 0 and n̂ is a unit normal to S obeying n̂ ¨ k̂ ě 0.

Q[25](˚): Let S be the curved surface below, oriented by the outward normal:

x2 + y2 + 2(z´ 1)2 = 6, z ě 0.

(E.g., at the high point of the surface, the unit normal is k̂.) Define

G = ∇ˆ F, where F = (xz´ y3 cos z) ı̂ıı + x3ez ̂ + xyzex2+y2+z2
k̂.

Find
ť

S G ¨ n̂dS.

Q[26](˚): Let C be a circle of radius R lying in the plane x + y + z = 3. Use Stokes’
Theorem to calculate the value of

¿

C

F ¨ dr

where F = z2ı̂ıı + x2 ̂ + y2k̂. (You may use either orientation of the circle.)

Q[27]: Let S be the oriented surface consisting of the top and four sides of the cube whose
vertices are (˘1,˘1,˘1), oriented outward. If F(x, y, z) = (xyz, xy2, x2yz), find the flux of
∇∇∇ˆ F through S.

Q[28]: Let S denote the part of the spiral ramp (that is helicoidal surface) parametrized by

x = u cos v, y = u sin v, z = v 0 ď u ď 1, 0 ď v ď 2π

Let C denote the boundary of S with orientation specified by the upward pointing
normal on S. Find

ż

C
y dx´ x dy + xy dz

§§ Stage 3

Q[29]: Let C be the intersection of x + 2y´ z = 7 and x2 ´ 2x + 4y2 = 15. The curve C is
oriented counterclockwise when viewed from high on the z-axis. Let

F =
(
ex2

+ yz
)

ı̂ıı +
(

cos(y2)´ x2) ̂ +
(

sin(z2) + xy
)

k̂

Evaluate
ű

C F ¨ dr.
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Q[30](˚):
(a) Find the curl of the vector field F =

(
2 + x2 + z , 0 , 3 + x2z

)
.

(b) Let C be the curve in R3 from the point (0, 0, 0) to the point (2, 0, 0), consisting of
three consecutive line segments connecting the points (0, 0, 0) to (0, 0, 3), (0, 0, 3) to
(0, 1, 0), and (0, 1, 0) to (2, 0, 0). Evaluate the line integral

ż

C
F ¨ dr

where F is the vector field from (a).

Q[31](˚):
(a) Let S be the bucket shaped surface consisting of the cylindrical surface y2 + z2 = 9

between x = 0 and x = 5, and the disc inside the yz-plane of radius 3 centered at the
origin. (The bucket S has a bottom, but no lid.) Orient S in such a way that the unit
normal points outward. Compute the flux of the vector field∇∇∇ˆG through S, where
G = (x,´z, y).

(b) Compute the flux of the vector field F = (2 + z, xz2, x cos y) through S, where S is as
in (a).

Q[32](˚): Let
F(x, y, z) =

(y
x
+ x1+x2

, x2 ´ y1+y2
, cos5(ln z)

)

(a) Write down the domain D of F.

(b) Circle the correct statement(s):

(a) D is connected.

(b) D is simply connected.

(c) D is disconnected.

(c) Compute∇∇∇ˆ F.

(d) Let C be the square with corners (3˘ 1, 3˘ 1) in the plane z = 2, oriented clockwise
(viewed from above, i.e. down z-axis). Compute

ż

C
F ¨ dr

(e) Is F conservative?

Q[33](˚): A physicist studies a vector field F(x, y, z). From experiments, it is known that F
is of the form

F(x, y, z) = xz ı̂ıı + (axeyz + byz) ̂ + (y2 ´ xeyz2) k̂

for some real numbers a and b. It is further known that F =∇∇∇ˆG for some
differentiable vector field G.

(a) Determine a and b.
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(b) Evaluate the surface integral
ĳ

S

F ¨ n̂ dS

where S is the part of the ellipsoid x2 + y2 + 1
4 z2 = 1 for which z ě 0, oriented so that

its normal vector has a positive z-component.

Q[34](˚): Let C be the curve in the xy-plane from the point (0, 0) to the point (5, 5)
consisting of the ten line segments consecutively connecting the points (0, 0), (0, 1),
(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4), (4, 5), (5, 5). Evaluate the line integral

ż

C
F ¨ dr

where

F = y ı̂ıı + (2x´ 10) ̂

Q[35](˚): Let F =
(

sin x2 , xz , z2). Evaluate
ű

C F ¨ dr around the curve C of intersection of
the cylinder x2 + y2 = 4 with the surface z = x2, traversed counter clockwise as viewed
from high on the z-axis.

Q[36](˚): Explain how one deduces the differential form

∇∇∇ˆ E = ´1
c
BH
Bt

of Faraday’s law from its integral form
¿

C

E ¨ dr = ´1
c

d
dt

ĳ

S

H ¨ n̂ dS

Q[37](˚): Let C be the curve given by the parametric equations:

x = cos t, y =
?

2 sin t, z = cos t, 0 ď t ď 2π

and let
F = z ı̂ıı + x ̂ + y3z3 k̂

Use Stokes’ theorem to evaluate
¿

C

F ¨ dr

Q[38](˚): Use Stokes’ theorem to evaluate
¿

C

z dx + x dy´ y dz

where C is the closed curve which is the intersection of the plane x + y + z = 1 with the
sphere x2 + y2 + z2 = 1. Assume that C is oriented clockwise as viewed from the origin.
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Q[39](˚): Let S be the part of the half cone

z =
b

x2 + y2, y ě 0,

that lies below the plane z = 1.

(a) Find a parametrization for S.

(b) Calculate the flux of the velocity field

v = x ı̂ıı + y ̂´ 2z k̂

downward through S.

(c) A vector field F has curl∇∇∇ˆ F = x ı̂ıı + y ̂´ 2z k̂. On the xz-plane, the vector field F is
constant with F(x, 0, z) = ̂. Given this information, calculate

ż

C
F ¨ dr,

where C is the half circle
x2 + y2 = 1, z = 1, y ě 0

oriented from (´1, 0, 1) to (1, 0, 1).

Q[40]: Consider
ť

S(∇∇∇ˆ F) ¨ n̂ dS where S is the portion of the sphere x2 + y2 + z2 = 1 that
obeys x + y + z ě 1, n̂ is the upward pointing normal to the sphere and F = (y´ z)ı̂ıı +
(z ´ x)̂ + (x ´ y)k̂. Find another surface S1 with the property that

ť

S(∇∇∇ ˆ F) ¨ n̂ dS =
ť

S1(∇∇∇ˆ F) ¨ n̂ dS and evaluate
ť

S1(∇∇∇ˆ F) ¨ n̂ dS.
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TRUE/FALSE AND OTHER
SHORT QUESTIONS

Chapter 5

Exercises
Jump to HINTS, ANSWERS, SOLUTIONS or TABLE OF CONTENTS.

Q[1](˚): True or false?

(a) ∇∇∇ ¨ (aˆ r) = 0, where a is a constant vector in R3 , and r is the vector field
r = (x, y, z).

(b) ∇∇∇ˆ (∇∇∇ f ) = 0 for all scalar fields f on R3 with continuous second partial derivatives.

(c) ∇∇∇ ¨ ( f F) =∇∇∇( f ) ¨ F + f∇∇∇ ¨ F, for every vector field F in R3 with continuous partial
derivatives, and every scalar function f in R3 with continuous partial derivatives.

(d) Suppose F is a vector field with continuous partial derivatives in the region D, where
D is R3 without the origin. If∇∇∇ ¨ F ą 0 throughout D, then the flux of F through the
sphere of radius 5 with center at the origin is positive.

(e) If a vector field F is defined and has continuous partial derivatives everywhere in R3,
and it satisfies∇∇∇ ¨ F = 0, everywhere, then, for every sphere, the flux out of one
hemisphere is equal to the flux into the opposite hemisphere.

(f) If r(t) is a twice continuously differentiable path in R2 with constant curvature κ,
then r(t) parametrizes part of a circle of radius 1/κ.

(g) The vector field F =
(
´ y

x2+y2 , x
x2+y2

)
is conservative in its domain, which is R2,

without the origin.

(h) If a vector field F = (P, Q) in R2 has Q = 0 everywhere in R2, then the line integral
ű

F ¨ dr is zero, for every simple closed curve in R2.

(i) If the acceleration and the speed of a moving particle in R3 are constant, then the
motion is taking place along a spiral.
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Q[2](˚): True or false?

(a) ∇∇∇ˆ (aˆ r) = 0, where a is a constant vector in R3 , and r is the vector field
r = (x, y, z).

(b) ∇∇∇ ¨ (∇∇∇ f ) = 0 for all scalar fields f on R3 with continuous second partial derivatives.

(c) ∇∇∇(∇∇∇ ¨ F) = 0 for every vector field F on R3 with continuous second partial
derivatives.

(d) Suppose F is a vector field with continuous partial derivatives in the region D, where
D is R3 without the origin. If∇∇∇ ¨ F = 0, then the flux of F through the sphere of
radius 5 with center at the origin is 0.

(e) Suppose F is a vector field with continuous partial derivatives in the region D, where
D is R3 without the origin. If∇∇∇ˆ F = 0 then

ű

C F ¨ dr is zero, for every simple and
smooth closed curve C in R3 which avoids the origin.

(f) If a vector field F is defined and has continuous partial derivatives everywhere in R3,
and it satisfies∇∇∇ ¨ F ą 0, everywhere, then, for every sphere, the flux out of one
hemisphere is larger than the flux into the opposite hemisphere.

(g) If r(t) is a path in R3 with constant curvature κ, then r(t) parametrizes part of a circle
of radius 1/κ.

(h) The vector field F =
(
´ y

x2+y2 , x
x2+y2 , z

)
is conservative in its domain, which is R3,

without the z-axis.

(i) If all flow lines of a vector field in R3 are parallel to the z-axis, then the circulation of
the vector field around every closed curve is 0.

(j) If the speed of a moving particle is constant, then its acceleration is orthogonal to its
velocity.

Q[3](˚):
(a) True or false? If r(t) is the position at time t of an object moving in R3, and r(t) is

twice differentiable, then |r2(t)| is the tangential component of its acceleration.

(b) Let r(t) is a smooth curve in R3 with unit tangent, normal and binormal vectors T̂(t),
N̂(t), B̂(t). Which two of these vectors span the plane normal to the curve at r(t)?

(c) True or false? If F = Pı̂ıı + Q̂ + Rk̂ is a vector field on R3 such that P, Q, R have
continuous first order derivatives, and if∇∇∇ˆ F = 0 everywhere on R3 , then F is
conservative.

(d) True or false? If F = Pı̂ıı + Q̂ + Rk̂ is a vector field on R3 such that P, Q, R have
continuous second order derivatives, then∇∇∇ˆ (∇∇∇ ¨ F) = 0.

(e) True or false? If F is a vector field on R3 such that |F(x, y, z)| = 1 for all x, y, z, and if
S is the sphere x2 + y2 + z2 = 1, then

ť

S F ¨ n̂ dS = 4π.

(f) True or false? Every closed surface S in R3 is orientable. (Recall that S is closed if it is
the boundary of a solid region E.)
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Q[4](˚):
(a) In the curve shown below (a helix lying in the surface of a cone), is the curvature

increasing, decreasing, or constant as z increases?

y

z

x

(b) Of the two functions shown below, one is a function f (x) and one is its curvature
κ(x). Which is which?

x

y

D

C

(c) Let C be the curve of intersection of the cylinder x2 + z2 = 1 and the saddle xz = y.
Parametrise C. (Be sure to specify the domain of your parametrisation.)

(d) Let H be the helical ramp (also known as a helicoid) which revolves around the
z-axis in a clockwise direction viewed from above, beginning at the y-axis when
z = 0, and rising 2π units each time it makes a full revolution. Let S be the the
portion of H which lies outside the cylinder x2 + y2 = 4, above the z = 0 plane and
below the z = 5 plane. Choose one of the following functions and give the domain
on which the function you have chosen parametrizes S. (Hint: Only one of the
following functions is possible.)

(a) r(u, v) =
(
u cos v, u sin v, u

)

(b) r(u, v) =
(
u cos v, u sin v, v

)

(c) r(u, v) =
(
u sin v, u cos v, u

)

(d) r(u, v) =
(
u sin v, u cos v, v

)

(e) Write down a parametrized curve of zero curvature and arclength 1. (Be sure to
specify the domain of your parametrisation.)
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(f) If∇∇∇ ¨ F is a constant C on all of R3, and S is a cube of unit volume such that the flux
outward through each side of S is 1, what is C?

(g) Let

F(x, y) =
(
ax + by , cx + dy

)

Give the full set of a, b, c and d such that F is conservative.

(h) If r(s) has been parametrized by arclength (i.e. s is arclength), what is the arclength
of r(s) between s = 3 and s = 5?

(i) Let F be a 2D vector field which is defined everywhere except at the points marked P
and Q. Suppose that∇∇∇ˆ F = 0 everywhere on the domain of F. Consider the five
curves R, S, T, U, and V shown in the picture.

U

S
T

R

V

P

Q

Which of the following is necessarily true?

(1)
ş

S F ¨ dr =
ş

T F ¨ dr

(2)
ş

R F ¨ dr =
ş

S F ¨ dr =
ş

T F ¨ dr =
ş

U F ¨ dr = 0

(3)
ş

R F ¨ dr +
ş

S F ¨ dr +
ş

T F ¨ dr =
ş

U F ¨ dr

(4)
ş

U F ¨ dr =
ş

R F ¨ dr +
ş

S F ¨ dr

(5)
ş

V F ¨ dr = 0

(j) Write down a 3D vector field F such that for all closed surfaces S, the volume
enclosed by S is equal to

ĳ

S

F ¨ n̂ dS

(k) Consider the vector field F in the xy-plane shown below. Is the k̂th component of
∇∇∇ˆ F at P positive, negative or zero?
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P

Q[5](˚): Say whether the following statements are true or false.

(a) If F is a 3D vector field defined on all of R3 , and S1 and S2 are two surfaces with the
same boundary, but

ť

S1
F ¨ n̂ dS ‰ ť

S2
F ¨ n̂ dS, then∇∇∇ ¨ F is not zero anywhere.

(b) If F is a vector field satisfying∇∇∇ˆ F = 0 whose domain is not simply-connected, then
F is not conservative.

(c) The osculating circle of a curve C at a point has the same unit tangent vector, unit
normal vector, and curvature as C at that point.

(d) A planet orbiting a sun has period proportional to the cube of the major axis of the
orbit.

(e) For any 3D vector field F,∇∇∇ ¨ (∇∇∇ˆ F) = 0.

(f) A field whose divergence is zero everywhere in its domain has closed surfaces S in
its domain.

(g) The gravitational force field is conservative.

(h) If F is a field defined on all of R3 such that
ş

C F ¨ dr = 3 for some curve C, then∇∇∇ˆ F
is non-zero at some point.

(i) The normal component of acceleration for a curve of constant curvature is constant.

(j) The curve defined by

r1(t) = cos(t4) ı̂ıı + 3t4 ̂, ´8 ă t ă 8,

is the same as the curve defined by

r2(t) = cos t ı̂ıı + 3t k̂, ´8 ă t ă 8

Q[6](˚): Which of the following statements are true (T) and which are false (F)? All real
valued functions f (x, y, z) and all vector fields F(x, y, z) have domain R3 unless specified
otherwise.

(a) If f is a continuous real valued function and S a smooth oriented surface, then
ĳ

S

f dS = ´
ĳ

´S

f dS

where ‘´S’ denotes the surface S but with the opposite orientation.
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(b) Suppose the components of the vector field F have continuous partial derivatives. If
ť

S∇∇∇ˆ F ¨ n̂ dS = 0 for every closed smooth surface, then F is conservative.

(c) Suppose S is a smooth surface bounded by a smooth simple closed curve C. The
orientation of C is determined by that of S as in Stokes’ theorem. Suppose the real
valued function f has continuous partial derivatives. Then

ż

C
f dx =

ĳ

S

(B f
Bz

̂´ B f
By

k̂
)
¨ n̂ dS

(d) Suppose the real valued function f (x, y, z) has continuous second order partial
derivatives. Then

(∇∇∇ f )ˆ (∇∇∇ f ) =∇∇∇ˆ (∇∇∇ f )

(e) The curve parameterized by

r(t) =
(
2 + 4t3 , ´t3 , 1´ 2t3) ´8 ă t ă 8

has curvature κ(t) = 0 for all t.

(f) If a smooth curve is parameterized by r(s) where s is arc length, then its tangent
vector satisfies

|r1(s)| = 1

(g) If S is the sphere x2 + y2 + z2 = 1 and F is a constant vector field, then
ť

S F ¨ n̂ dS = 0.

(h) There exists a vector field F whose components have continuous second order partial
derivatives such that∇∇∇ˆ F = (x, y, z).

Q[7](˚): The vector field F = P(x, y) ı̂ıı + Q(x, y) ̂ is plotted below.
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x

y

A

B

C

C1C2

In the following questions, give the answer that is best supported by the plot.

(a) The derivative Py at the point labelled A is (a) positive, (b) negative, (c) zero, (d) there
is not enough information to tell.

(b) The derivative Qx at the point labelled A is (a) positive, (b) negative, (c) zero, (d)
there is not enough information to tell.

(c) The curl of F at the point labelled A is (a) in the direction of +k̂ (b) in the direction of
´k̂ (c) zero (d) there is not enough information to tell.

(d) The work done by the vector field on a particle travelling from point B to point C
along the curve C1 is (a) positive (b) negative (c) zero (d) there is not enough
information to tell.

(e) The work done by the vector field on a particle travelling from point B to point C
along the curve C2 is (a) positive (b) negative (c) zero (d) there is not enough
information to tell.

(f) The vector field F is (a) the gradient of some function f (b) the curl of some vector
field G (c) not conservative (d) divergence free.

Q[8](˚): Which of the following statements are true (T) and which are false (F)?
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(a) The curve defined by

r1(t) = cos(t2) ı̂ıı + sin(t2) ̂ + 2t2 k̂, ´8 ă t ă 8
is the same as the curve defined by

r2(t) = cos t ı̂ıı + sin t ̂ + 2t k̂, ´8 ă t ă 8

(b) The curve defined by

r1(t) = cos(t2) ı̂ıı + sin(t2) ̂ + 2t2 k̂, 0 ď t ď 1

is the same as the curve defined by

r2(t) = cos t ı̂ıı + sin t ̂ + 2t k̂, 0 ď t ď 1

(c) If a smooth curve is parameterized by r(s) where s is arc length, then its tangent
vector satisfies

|r1(s)| = 1

(d) If r(t) defines a smooth curve C in space that has constant curvature κ ą 0, then C is
part of a circle with radius 1/κ.

(e) If the speed of a moving object is constant, then its acceleration is orthogonal to its
velocity.

(f) The vector field

F(x, y, z) =
´y

x2 + y2 ı̂ıı +
x

x2 + y2 ̂ + zk̂

is conservative.

(g) Suppose the vector field F(x, y, z) is defined on an open domain and its components
have continuous partial derivatives. If∇∇∇ˆ F = 0, then F is conservative.

(h) The region D =
 

(x, y)
ˇ

ˇ x2 + y2 ą 1
(

is simply connected.

(i) The region D =
 

(x, y)
ˇ

ˇ y´ x2 ą 0
(

is simply connected.

(j) If F is a vector field whose components have two continuous partial derivatives, then
ĳ

S

∇∇∇ˆ F ¨ n̂ dS = 0

when S is the boundary of a solid region E in R3.

Q[9](˚): Which of the following statements are true (T) and which are false (F)?

(a) If a smooth curve C is parameterized by r(s) where s is arc length, then the tangent
vector r1(s) satisfies |r1(s)| = 1.

(b) If r(t) defines a smooth curve C in space that has constant curvature κ ą 0, then C is
part of a circle with radius 1/κ.
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(c) Suppose F is a continuous vector field with open domain D. If
ż

C
F ¨ dr = 0

for every piecewise smooth closed curve C in D, then F is conservative.

(d) Suppose F is a vector field with open domain D, and the components of F have
continuous partial derivatives. If∇∇∇ˆ F = 0 everywhere on D, then F is conservative.

(e) The curve defined by

r1(t) = cos(t2) ı̂ıı + sin(t2) ̂ + 2t2 k̂, ´8 ă t ă 8

is the same as the curve defined by

r2(t) = cos t ı̂ıı + sin t ̂ + 2t k̂, ´8 ă t ă 8

(f) The curve defined by

r1(t) = cos(t2) ı̂ıı + sin(t2) ̂ + 2t2 k̂, 0 ď t ď 1

is the same as the curve defined by

r2(t) = cos t ı̂ıı + sin t ̂ + 2t k̂, 0 ď t ď 1

(g) Suppose F(x, y, z) is a vector field whose components have continuous second order
partial derivatives. Then∇∇∇ ¨ (∇∇∇ˆ F) = 0.

(h) Suppose the real valued function f (x, y, z) has continuous second order partial
derivatives. Then∇∇∇ ¨ (∇∇∇ f ) = 0.

(i) The region D =
 

(x, y)
ˇ

ˇ x2 + y2 ą 1
(

is simply connected.

(j) The region D =
 

(x, y)
ˇ

ˇ y´ x2 ą 0
(

is simply connected.

Q[10](˚): Let F, G be vector fields, and f , g be scalar fields. Assume F, G, f , g are defined
on all of R3 and have continuous partial derivatives of all orders everywhere. Mark each
of the following as True (T) or False (F).

(a) If C is a closed curve and∇∇∇ f = 0, then
ş

C f ds = 0.

(b) If r(t) is a parametrization of a smooth curve C and the binormal B(t) is constant
then C is a straight line.

(c) If r(t) is the position of a particle which travels with constant speed, then
r1(t) ¨ r2(t) = 0.

(d) If C is a path from points A to B, then the line integral
ş

C
(
FˆG

) ¨ dr is independent
of the path C.

(e) The line integral
ş

C f ds does not depend of the orientation of the curve C.
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(f) If S is a parametric surface r(u, v) then a normal to S is given by

Br
Bu
ˆ Br
Bu

(g) The surface area of the parametric surface S given by
r(u, v) = x(u, v) ı̂ıı + y(u, v) ̂ + z(u, v) k̂, (u, v) P D, is given by

ĳ

D

(
1 +

(
Bz
Bu
)2

+
(
Bz
Bv
)2
)1/2

dudv

(h) If F is the velocity field of an incompressible fluid then∇∇∇ ¨ F = 0.

(i) ∇∇∇ ¨ (FˆG
)
= (∇∇∇ ¨ F)G + (∇∇∇ ¨G)F

Q[11](˚): Say whether the following statements are true (T) or false (F). You may assume
that all functions and vector fields are defined everywhere and have derivatives of all
orders everywhere.

(a) The divergence of∇∇∇ˆ F is zero, for every F.

(b) In a simply connected region,
ş

C F ¨ dr depends only on the endpoints of C.

(c) If∇∇∇ f = 0, then f is a constant function.

(d) If∇∇∇ˆ F = 0, then F is a constant vector field.

(e) If∇∇∇ ¨ F = 0, then
ť

S F ¨ n̂ dS = 0 for every closed surface S.

(f) If
ş

C F ¨ dr = 0 for every closed curve C, then∇∇∇ˆ F = 0.

(g) If r(t) is a path in three space with constant speed |v(t)|, then the acceleration is
perpendicular to the tangent vector, i.e. a ¨ T̂ = 0.

(h) If r(t) is a path in three space with constant curvature κ, then r(t) parameterizes part
of a circle of radius 1/κ.

(i) Let F be a vector field and suppose that S1 and S2 are oriented surfaces with the same
boundary curve C, and C is given the direction that is compatible with the
orientations of S1 and S2 . Then

ť

S1 F ¨ n̂ dS =
ť

S2 F ¨ n̂ dS.

(j) Let A(t) be the area swept out by the trajectory of a planet from time t = 0 to time t.
The dA

dt is constant.

Q[12](˚): Find the correct identity, if f is a function and G and F are vector fields. Select
the true statement.

(a) ∇∇∇ ¨ ( f F) = f∇∇∇ˆ (F) + (∇∇∇ f )ˆ F

(b) ∇∇∇ ¨ ( f F) = f∇∇∇ ¨ (F) + F ¨∇∇∇ f

(c) ∇∇∇ˆ ( f F) = f∇∇∇ ¨ (F) + F ¨∇∇∇ f

(d) None of the above are true.
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Q[13](˚): True or False. Consider vector fields F and scalar functions f and g which are
defined and smooth in all of three-dimensional space. Let r = (x, y, z) represent a
variable point in space, and let ωωω = (ω1, ω2, ω3) be a constant vector. Let Ω be a
smoothly bounded domain with outer normal n̂. Which of the following are identites,
always valid under these assumptions?

(a) ∇∇∇ ¨∇∇∇ f = 0

(b) Fˆ∇∇∇ f = f ∇∇∇ ¨ F
(c) ∇∇∇2 f =∇∇∇(∇∇∇ ¨ f )

(d) ∇∇∇ˆ∇∇∇ f = 0

(e) (∇∇∇ˆ f ) + (∇∇∇ˆ g) =∇∇∇ f ˆ∇∇∇g

(f) ∇∇∇ ¨∇∇∇ˆ F = 0

(g) ∇∇∇ ¨ r
|r|2 = 0 for r ‰ 0

(h) ∇∇∇ˆ (ωωωˆ r) = 0

(i)
¡

Ω

f∇∇∇ ¨ F dV = ´
¡

Ω

∇∇∇ f ¨ F dV +

ĳ

BΩ

f F ¨ n̂ dS

(j)
ĳ

BΩ

f n̂ dS = ´
¡

Ω

∇∇∇ f dV

Q[14](˚): Determine if the given statements are True or False. Provide a reason or a
counterexample.

(a) A constant vector field is conservative on R3.

(b) If∇∇∇ ¨ F = 0 for all points in the domain of F then F is a constant vector field.

(c) Let r(t) be a parametrization of a curve C in R3. If r(t) and dr
dt are orthogonal at all

points of the curve C, then C lies on the surface of a sphere x2 + y2 + z2 = a2 for some
a ą 0.

(d) The curvature κ at a point on a curve depends on the orientation of the curve.

(e) The domain of a conservative vector field must be simply connected.

Q[15](˚): Provide a short answer to each question.

(a) Compute∇∇∇ ¨ (x2y ı̂ıı + ey sin x ̂ + ezx k̂
)

(b) Compute∇∇∇ˆ (cos x2 ı̂ıı´ y3z ̂ + xz k̂
)

(c) Let
F =

x
x2 + y2 ı̂ıı +

y
x2 + y2 ̂ + z2 k̂

and let D be the domain of F. Consider the following four statments.

(I) D is connected
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(II) D is disconnected

(III) D is simply connected

(IV) D is not simply connected

Choose one of the following:

(i) (II) and (III) are true

(ii) (I) and (III) are true

(iii) (I) and (IV) are true

(iv) (II) and (IV) are true

(v) Not enough information to determine

(d) True or False? If the speed of a particle is constant then the acceleration of the particle
is zero. If your answer is True, provide a reason. If your answer is False, provide a
counter example.

Q[16](˚): Are each of the following statements True or False? Recall that f P Ck means
that all derivatives of f up to order k exist and are continuous.

(a) ∇∇∇ˆ ( f∇∇∇ f ) = 0 for all C2 scalar functions f in R3.

(b) ∇∇∇ ¨ ( f F) =∇∇∇ f ¨ F + f∇∇∇ ¨ F for all C1 scalar functions f and C1 vector fields F in R3.

(c) A smooth space curve C with constant curvature κ = 0 must be a part of a straight
line.

(d) A smooth space curve C with constant curvature κ ‰ 0 must be part of a circle of
radius 1/κ.

(e) If f is any smooth function defined in R3 and if C is any circle, then
ş

C∇∇∇ f ¨ dr = 0.

(f) Suppose F is a smooth vector field in R3 and∇∇∇ ¨ F = 0 everywhere. Then, for every
sphere, the flux out of one hemisphere is equal to the flux into the opposite
hemisphere.

(g) Let F(x, y, z) be a continuously differentiable vector field which is defined for every
(x, y, z). Then,

ť

S∇∇∇ˆ F ¨ n̂ dS = 0 for any closed surface S. (A closed surface is a
surface that is the boundary of a solid region.)

Q[17](˚): True or false (reasons must be given):

(a) If a smooth vector field on R3 is curl free and divergence free, then its potential is
harmonic. By definition, φ(x, y, z) is harmonic if

(
B2

Bx2 +
B2

By2 +
B2

Bz2

)
φ(x, y, z) = 0.

(b) If F is a smooth conservative vector field on R3, then its flux through any smooth
closed surface is zero.

Q[18](˚): The following statements may be true or false. Decide which. If true, give a
proof. If false, provide a counter-example.

(a) If f is any smooth function defined in R3 and if C is any circle, then
ş

C∇∇∇ f ¨ dr = 0.
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(b) There is a vector field F that obeys∇∇∇ˆ F = x ı̂ıı + y ̂ + z k̂.

Q[19](˚): Short answers:

(a) Let S be the level surface f (x, y, z) = 0. Why is
ş

C∇∇∇ f ¨ dr = 0 for any curve C on S?

(b) A point moving in space with position r(t) at time t satisfies the condition
a(t) = f (t)r(t) for all t for some real valued function f . Why is vˆ r a constant
vector?

(c) Why is the trajectory of the point in (b) contained in a plane?

(d) Is the binormal vector, B̂, of a particle moving in space, always orthogonal to the unit
tangent vector T̂ and unit normal N̂?

(e) If the curvature of the path of a particle moving in space is constant, is the
acceleration zero when maximum speed occurs?

Q[20](˚): A region R is bounded by a simple closed curve C. The curve C is oriented such
that R lies to the left of C when walking along C in the direction of C. Determine whether
or not each of the following expressions is equal to the area of R. You must justify your
conclusions.

(a)
1
2

ż

C
´y dx + x dy

(b)
1
2

ż

C
´x dx + y dy

(c)
ż

C
y dx

(d)
ż

C
3y dx + 4x dy

Q[21](˚): Say whether each of the following statements is true or false and explain why.

(a) A moving particle has velocity and acceleration vectors that satisfy |v| = 1 and
|a| = 1 at all times. Then the curvature of this particle’s path is a constant.

(b) If F is any smooth vector field defined in R3 and if S is any sphere, then
ĳ

S

∇∇∇ˆ F ¨ n̂ dS = 0

Here n̂ is the outward normal to S.

(c) If F and G are smooth vector fields in R3 and if
¿

C

F ¨ dr =
¿

C

G ¨ dr for every circle C,

then F = G.

Q[22](˚): Three quickies:

(a) A moving particle with position r(t) = (x(t), y(t), z(t)) satisfies

a = f (r, v)r
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for some scalar-valued function f . Prove that rˆ v is constant.

(b) Calculate
ť

S(x ı̂ıı´ y ̂ + z2 k̂) ¨ n̂dS, where S is the boundary of any solid right
circular cylinder of radius b with one base in the plane z = 1 and the other base in the
plane z = 3.

(c) Let F and G be smooth vector fields defined in R3. Suppose that, for every circle C,
we have

ű

C F ¨ dr =
ť

S G ¨ n̂ dS, where S is the oriented disk with boundary C. Prove
that G =∇∇∇ˆ F.
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Hints for Exercises 1.1. — Jump to TABLE OF CONTENTS.

H-1: Draw sketches. Don’t forget the range that the parameter runs over.

H-2: Find the value of t at which the three points occur on the curve.

H-3: The curve “crosses itself” when (sin t, t2) gives the same coordinate for different
values of t. When these crossings occur will depend on which crossing you’re referring
to, so your answers should all depend on t.

H-4: For part (b), find the position of P relative to the centre of the circle. Then combine
your answer with part (a).

H-5: We aren’t concerned with x, so we can eliminate it by solving one equation for x as a
function of y and z and plugging the result into the other equation.

H-6: To determine whether the particle is rising or falling, we only need to consider its
z-coordinate.

H-7: This is the setup from Lemma 1.1.3 in the CLP-4. The two quantities you’re labelling
are related, but different.

H-8: See the note just before Example 1.1.5.

H-9: To simplify your answer, remember: the cross product of a and b is a vector
orthogonal to both a and b; the cross product of a vector with itself is zero; and two
orthogonal vectors have dot product 0.

H-10: Evaluate d
dt |r(t)|2.

H-11: Just compute |v(t)|. Note that
(
eat + e´at)2

= e2at + 2 + e´2at.

H-12: To figure out what the path looks like, first concentrate on the x- and y-coordinates.

H-13: Review §1.5 of the CLP-4 text. The arc length should be positive.

H-14: From Lemma 1.1.3 in the CLP-4 text, we know the arclength from t = 0 to t = 1
will be

ż 1

0

ˇ

ˇ

ˇ

ˇ

dr
dt

(t)
ˇ

ˇ

ˇ

ˇ

dt

The notation looks a little confusing at first, but we can break it down piece by piece:
dr
dt (t) is a vector, whose components are functions of t. If we take its magnitude, we’ll get
one big function of t. That function is what we integrate. Before integrating it, however,
we should simplify as much as possible.

H-16: r(t) is the position of the particle, so its acceleration is r2(t).

H-17: Review §1.5 of the CLP-4 text.

H-18: Review §1.1 of the CLP-4 text.

H-19: (a) First parametrize x2 + y2 = 9.

H-20: If you got the answer 0 in part (b), you dropped some absolute value signs.
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H-22: The integral you get can be evaluated with a simple substitution. You may want to
factor the integrand first.

H-23: (b) 1
4x + 1 + x is a perfect square.

(c), (d) Let

• r(x) be the position of the particle when its first coordinate is x,
• R(t) be the position of the particle at time t, and
• x(t) be the x–coordinate of the particle at time t.

Then R(t) = r
(
x(t)

)
. We are told |R1(t)| = 9 for all t.

H-24: Given the position of a particle, you can find its velocity.

H-25: If r(u) is the parametrization of C by u, then the position of the particle at time t is
R(t) = r

(
u(t)

)
.

H-26: By Newton’s law, F = ma.

H-27: Denote by r(x) the parametrization of C by x. If the x-coordinate of the particle at
time t is x(t), then the position of the particle at time t is R(t) = r

(
x(t)

)
. Also, though the

particle is moving at a constant speed, it doesn’t necessarily have a constant value of dx
dt .

H-28: The question is already set up as an xy-plane, with the camera at the origin, so the
vector in the direction the camera is pointing is (x(t), y(t)). Let θ be the angle the camera
makes with the positive x-axis (due east). The tangent function gives a clean-looking
relation between θ(t), x(t), and y(t).

H-29: Usng the Theorem of Pappus, the surface area and volume of this pipe are the
same as that of a straight pipe with the same length and radius.

H-30: A helix can be parametrized by r(θ) = a cos θ ı̂ıı + a sin θ ̂ + bθ k̂.

H-31: Define u(t) = eαt dr
dt (t) and substitute dr

dt (t) = e´αtu(t) into the given differential
equation to find a differential equation for u.

Hints for Exercises 1.2. — Jump to TABLE OF CONTENTS.

H-1: You’re asked to find the arclength of the curve from s = 1 to s = t.

H-2: The arclength will be 0 at P.

H-3: a(t0) and b(s0) describe the same point on R.

H-4: On your way to finding the relationship between t and arclength, you should realize
that the curve has constant speed (with respect to t), though not constant velocity.

H-5: For which values of t is |r(t)| ď 1? Check the domain of t — we’re not starting at
zero.

H-6: Be careful with the domain.

H-7: Remember
?

x2 = |x|. You will need to consider cases for this one.
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Hints for Exercises 1.3. — Jump to TABLE OF CONTENTS.

H-1: The curve is a circle, so you don’t need to do any calculus.

H-2: Because r is a circle, you can parametrize it with respect to arclength without using
an integral. You found κ in Question 1.

H-3: When t is large, does the spiral locally look like a circle of large radius, or small?

H-4: ds
dt = |v(t)| = |r1(t)|

H-5: T̂ = v(t)
|v(t)| =

r1(t)
|r1(t)|

H-7: You can find the last two quantities by making use of the first three. Looking ahead,
the formula list in Section 1.5 might come in handy.

H-8: We can calculate κ =
|v(t)ˆ a(t)|
ˇ

ˇ

ˇ

ˇ

(
ds
dt

)3
ˇ

ˇ

ˇ

ˇ

. We can also figure out what kind of a shape our

curve is.

H-9: The maximum and minimum values of κ(t) should be obvious from your formula
for κ(t).

H-11: For part (a), determine r(0), r(π), r(2π), r(3π), and r(4π), to help you map out the
motion. Also visualize the thumbtack as the wheel moves.

For part (d), use the fact that you only care about t = π: where is this on your sketch?
What does that mean about the direction of N̂?

H-12: You should find that s = θ!

H-13: Since κ(x) is never negative, κ(x) is maximum when κ2(x) is maximum. The latter
is easier to compute.

Hints for Exercises 1.4. — Jump to TABLE OF CONTENTS.

H-1: Use the right-hand rule to figure out how B̂ is oriented.

H-2: Speed is the norm of velocity. Does that fit this equation?

H-3: Review Example 1.4.4 and remember that positive torsion indicates “right-handed
twisting.” You shouldn’t actually need to calculate anything.

H-4: (a) Show that the tangent vector T̂(s) is a constant.

(b) Guess the plane. To do so, first show that the binormal B̂(s) is a constant. Then show
that (r(s)´ r(0)) ¨ B̂ is a constant.

(c) Guess the circle. To do so, first show that rc(s) = r(s) + 1
κ(s)N̂(s) is a constant.

H-5: It is not necessary to compute anything.
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H-6: Both parts of this question make use of the quantity ds
dt .

H-7: τ(t) =
(v(t)ˆ a(t)) ¨ da

dt
|v(t)ˆ a(t)|2

H-8: Review §1.5 of the CLP-4 text.

H-9: The vector perpendicular to the plane containing the osculating circle is the
binormal vector, B̂.

H-10: (a) The tangent vector of the curve is also a normal vector for the specified plane.

(b) Review §1.5 of the CLP-4 text.

H-11: Remember a(t) = d2s
dt2 (t) T̂(t) + κ(t)

(ds
dt (t)

)2N̂(t). Remember also that B̂ is
orthogonal to T̂ and N̂, which are in the plane of C.

H-12: By Theorem 1.3.3 of the CLP-4 text, the tangential component of acceleration is
aT(t) = d2s

dt2

H-13: Use your answers to previous parts to calculate (d). Tangential and normal
components of acceleration are defined just before Example 1.3.4 in the text.

H-14: (a) All points on the curve obey an equation that contains x’s and y’s, but no z’s.
There is a standard way to get a nice parametrization of this equation, that doesn’t
involve using square roots.

(b) You don’t need to compute the constants for all points: only the given point.

H-15: For part (c), you only need to find N̂ at a point, which is easier than finding it for
all t.

H-16: First parametrize x2 + y2 = 1 in the standard way. You don’t need calculus for part
(c).

H-17: Review §1.5 of the CLP-4 text.

H-18: Since 0 ď t ď 1, you can simplify |t| = t.

H-19: For part (f), remember that you can write the equation of a plane easily once you
know a point it passes through, and a vector normal to it. The plane should touch the
curve when t = 0, and the plane should contain T̂ and N̂.

H-20: It might be easier to find B̂ before you find N̂, then use the formula
N̂(t) = B̂(t)ˆ T̂(t).

H-21: The osculating plane at r(t0) is the plane through r(t0) with normal B̂(t0). Also,
notice the points for parts (a) and (b) are not the same.

H-22: Since t ą 0, we can simplify
?

t2 = |t| = t.

H-23: In this context, “distance travelled” means “arclength.”

H-24: Use T̂ and N̂ to compute B̂.

H-25: (a) First find a parametrization
(
x(θ), y(θ)

)
for x2 + y2 = 1.
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H-26: You need to find the acceleration at (1, 1, 1). Think about what strategies are
available for computing the acceleration.

H-27: For part (a), T(t) will be a vector of the form T(t) = (1,at,bt)
?

1+4t2 where a and b are
nonzero constant real numbers.

For part (b), N(t) will be a vector of the form N(t) = (´4t,α,β)
2
?

1+4t2 where α and β are nonzero
constant real numbers.

For part (e), κ(t) will be a function of the form κ(t) = γ

(1+4t2)3/2 , where γ is a positive

constant real number.

H-28: Differentiate N̂ = B̂ˆ T̂ with respect to s.

The vectors N̂, B̂, and T̂ form a right-handed triple. Sketch them (the same way you
might sketch the x, y, and z axes) to figure out the signs of their cross products.

H-29: In part (b), note that a is the second derivative with respect to time (not θ). Exploit
a = dv

dt T̂ + v2κN̂ to find what you’re asked for.

H-30: For part (d), what is the relationship between the y- and z-components of the
particle’s position? How can you use that to find a plane containing the particle at all
times t?

H-31: Rather than trying to wrangle trig identities, plug in θ = π as soon as you can for
part (a). For part (c), remember that you need the chain rule if you want to make use of
your previous derivatives.

Hints for Exercises 1.6. — Jump to TABLE OF CONTENTS.

H-1: Your differential is ds, where s is arclength.

H-2: (a) You can parametrize the curve by r(θ) = r(θ) cos θ ı̂ıı + r(θ) sin θ ̂, θ1 ď θ ď θ2.

H-3: Following Definition 1.6.1, set f (x, y, z) = xy
z , x(t) = 2

3 t3, y(t) =
?

3t2, and z(t) = 3t.

H-4: Parametrize the circle in the usual way.

H-5: C can be parametrized as (1 + t, 2 + 2t, 3 + 2t) for 0 ď t ď 1.

H-7: Simplify! Also: d
dttarcsec tu = 1

|t|
?

t2´1
.

H-8: Newton’s law of motion is F = ma. The work done over a displacement dr is
W = F ¨ dr.

H-9: Sketch C and determine the normal vectors from the sketch. You can use x or y as
the integration variable in your integrals.

H-10: (c) How is x(t)2 + y(t)2 related to z(t)?

(d) First, sketch
(
x(t) , y(t)

)
.
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H-11: Remember x̄ =

ş

C xρ ds
ş

C ρ ds
, etc. The integrals you evaluate should all be

straightforward applications of the power rule.

Hints for Exercises 1.7. — Jump to TABLE OF CONTENTS.

H-1: Gravity pulls straight down, while the direction of the normal force depends on the
curve of the wire. There is not enough information to know the magnitude of the forces,
but you can approximate their directions.

H-2: This equation stems from F = ma. In that equation, a is what kind of derivative?

H-3: A thought experiment might help you avoid any calculations. If the wire were
perfectly vertical or perfectly horizontal, what would WN̂ be?

H-4: The skater reaches their highest point when |v| = 0.

H-5: The highest vertical height occurs just as the skateboarder’s speed reduces to 0, at
yS = E

mg .

H-6: At the bottom of the culvert, all the skater’s energy is kinetic, not potential. That is,
in the equation E = 1

2 m|v|2 + mgy, we have y = 0.

H-7: Equation 1.7.2 tells us the normal force exerted by the track is WN̂, where

W = mκ|v|2 + mgk̂ ¨ N̂. Equation 1.3.3 part (c) says a(θ) = d2s
dθ2 T̂ + κ

(
ds
dθ

)2
N̂.

H-8: When θ = 13π/3, d2s
dθ2 = 0, which is handy for a quicker calculation.

Important equations: the normal force exerted by the track is WN̂, where

W = mκ|v|2 + mĝ ¨ N̂ (Equation 1.7.2); a(θ) = d2s
dθ2 T̂ + κ

(
ds
dθ

)2
N̂ (Equation 1.3.3, part

(c) ).

H-9: According to the equation in the text, the skiier will become airborne when:

|v| ą
c

g
κ
|̂ ¨ N̂|

So, we need |v| to be greater than
b

g
κ |̂ ¨ N̂| for some point on the curve inside the range

1/e ď t ď e.

Note that g is given in metres per second, while the other quantities are in kilometres and
hours.

H-10: There are now three forces acting on the bead: one parallel to ̂ (exerted by gravity),
one parallel to N̂ (exerted by the wire), and one parallel to T̂ (exerted by the jet pack).

Follow the reasoning in the sliding bead section of the text, focusing on the tangential
forces.

H-11: If the snowmachine is moving at a constant speed, the tangential component of its
acceleration is zero. Part (a) is similar to Question 10.
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H-12: Follow the discussion in the text.

It’s fine to leave part (b) pretty messy. Your answer for part (c) involves the root of a
cubic function, but you don’t need a high degree of accuracy to decide between the three
options give.

Hints for Exercises 1.8. — Jump to TABLE OF CONTENTS.

H-2: r is allowed to be negative.

H-3: Compute, for each angle θ, the dot product êr(θ) ¨ êθ(θ).

H-5: The curve can be parametrized by r(θ) = f (θ)
[

cos θ ı̂ıı + sin θ ̂
]

Hints for Exercises 2.1. — Jump to TABLE OF CONTENTS.

H-1: Not all blanks represent a single interval.

H-2: Write down all coordinates where v(x, y) ¨ ı̂ıı = 0 or v(x, y) ¨ ̂ = 0, and look for a
pattern.

H-3: If you know the speed and direction of an object, you can find its velocity.

H-4:

H-5: When the twig is at (x, y) it has velocity v(x, y).

H-6: Whenever the twig is on the y-axis, its velocity is parallel to the y-axis. So it remains
on the y-axis for all time.

H-7: If you know the speed and direction of an object, you can find its velocity.

H-8: Set your face to be at the origin, (0, 0, 0).

If A is “inversely proportional” to B, then there exists a constant α such that AB = α.
That way when |B| goes up, |A| goes down, and vice-versa.

H-9: Start with the regions where v(x, y) ¨ ı̂ıı and v(x, y) ¨ ̂ are positive and negative. As
you move up/down/left/right, do the vectors get longer or shorter? More horizontal or
more vertical?

H-10: v(x, y) ¨ ı̂ıı is the distance from (x, y) to the origin, while v(x, y) ¨ ̂ is the distance
from (x, y) to the point (1, 1).

H-11: Factor x2 + xy = x(x + y) and y2 ´ xy = y(x´ y). Chop the plane up into eight
regions using the two coordinate axes and the lines y = x, y = ´x.

H-12: What is the geometric interpretation of each summand?

H-13: (a), (c) Intrepret the vector field geometrically.

H-14: The constant G is the same for all masses, but M differs. The net force is the sum of
three force vectors.
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H-15: For part a., make a triangle with P as one of its vertices that is similar to the
triangle made by the pole, the wall, and the ground. Its hypotenuse has length p; let its
base be b and its height be h. Find a way to translate between (b, h) and (x, y).

For part b., use your answer from part a. Start by describing a point on a pole as its
distance from the lower end of the pole, p. Then, consider dz

dt and
(

dx
dt , dy

dt

)
separately. If

you’re having a hard time simplifying your answer, note
a

x2 + y2 =
?

3(1´ z) for any
point (x, y, z) on a pole when H = 1.

Hints for Exercises 2.2. — Jump to TABLE OF CONTENTS.

H-2: Express x1(t) and y1(t) purely in terms of x(t) and y(t).

H-3: Review §2.2 in the CLP-4 text.

Hints for Exercises 2.3. — Jump to TABLE OF CONTENTS.

H-1: Carefully consider the context that lead to each of these equations.

H-2: One of the three options will NEVER be true, for any F.

H-3: Modify ϕ, the potential for F.

H-4: a. If F + G is conservative, what has to be true?
b. What if F and G are quite similar?
c. Find a potential for F + G.

H-5: Note that the domain is D =
 

(x, y)
ˇ

ˇ x ą 1
(

. Compare to Example 2.3.14 in the
text.

H-6: A potential does exist.

H-7: Recall d
dx ln |x| = 1

x .

H-8: Try the screening test, Theorem 2.3.9.

H-9:
ż

x
x2 + y2 + z2 dx can be evaluated by inspection, or with the substitution

u = x2 + y2 + z2.

H-11: For what values of the constants A and B does the vector field F pass the screening
test∇∇∇ˆ F = 0?

H-12: Review Example 2.1.2 in the CLP-4 text.

H-13: Following Example 2.3.3, the particle can never escape the region

 

(x, y, z)
ˇ

ˇ ϕ(x, y, z) ě ´E
(

where E is the energy of the system.
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H-14: Example 2.3.3 tells us 1
2 m|v(t)|2 ´ ϕ

(
x(t), y(t), z(t)

)
= E is a constant quantity,

provided F is conservative with potential ϕ(x, y, z).

H-15: Find a potential ϕ. Notice f , g, and h are functions of one variable each — this
simplifies things.

H-16: Write the points with curl 0 as multiples of a constant vector.

Hints for Exercises 2.4. — Jump to TABLE OF CONTENTS.

H-1: The top and bottom of the square can be easily paramerized using x as the
parameter. The other two sides can be easily parameterized using y as the parameter.

H-2: Contrast Theorems 2.4.7 and 2.3.9.

H-3: Please don’t do any computation, especially not to find C!

H-4: Review properties of conservative vector fields.

H-5: Review Theorem 2.4.6 in the text.

H-6: Review Theorem 2.4.6 in the text.

H-7: Part (d) is a hint.

H-8: The last part of the question is a huge hint.

H-11: Parametrize the curve using y as a parameter.

H-12: Use Theorems 2.4.6 and 2.4.7 in the CLP-4 text.

H-13: (a) Use Theorem 2.4.7 in the CLP-4 text.

(c) You may parametrize the curve using x as the parameter. Exploit the fact that, for the
value of λ found in part (a), F + λG is conservative.

H-15: Parametrize the path using sines and cosines. The work done is
ş

C F ¨ dr

H-16: Is F conservative?

H-17: Is F = xy ̂ conservative? Sketch C.

H-18: That the line integral is to be independent of path is a huge hint.

H-19: Note that

˝ y = 0 on the line segment from (1, 0, 0) to (0, 0, 1) and
˝ x = 0 on the line segment from (0, 0, 1) to (0, 1, 0) and
˝ z = 0 on the line segment from (0, 1, 0) to (1, 0, 0)

H-20: That F is conservative should be a dead giveaway.

H-21: To calculate the integral, it might be easier to find a potential for F and use
Theorem 2.4.2.

H-22: Your answer from (b) can help you in (c). Also, cos(1) = cos(´1), because cosine is
an even function.
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H-23: Review §2.4.1 of the text.

H-24: Relate the integral of part (d) to the integral of part (c).

H-25: Write the integral of part (c) as
ş

C G ¨ dr. What is the difference between G and F?

H-26: (d) How are G and F related?

H-27: (a) Start with B f
Bz = y2eyz.

(b) Use the result of part (a) to do part (b).

H-28: The integral in part (b) is path independent. That’s a big hint.

H-29: Part (a) is a hint for part (b).

H-30: The three parts of this problem are closely related.

H-31: We can rewrite x2 + y2 + z2 = 2z as x2 + y2 + (z´ 1)2 = 1.

H-32: (a) The curve can be easily parametrized by using x as a parameter.

(b) Don’t evaluate the integral directly.

H-33: Refer to Example 1.4.4 for a parametrization of a helix.

H-34: (b) Parametrize each side of the square by arc length, and make use of the plentiful
zeroes that arise.

H-35: Force is mass times acceleration, where acceleration is the second derivative of
position, r(t), with respect to time, t. The work done by F between time a and time b is
şb

a F ¨ dr.

H-36: Note that the curve goes from (2, 2) to (1, 1) — not the other way around.

For part (b), one possibility is to look for a path consisting of the line segment from (2, 2)
to (2, Y), followed by the line segment from (2, Y) to (1, Y), followed by the line segment
from (1, Y) to (1, 1), with Y being a parameter to be determined.

H-37: One possibility is to look for a path consisting of the line segment from (0, 0) to
(0, Y), followed by the line segment from (0, Y) to (2, Y), followed by the line segment
from (2, Y) to (2, 0), with Y being a parameter to be determined.

H-38: Is F conservative?

H-39: On S, note z = 2 + x2 ´ 3y2. Further, the vector field F̃(x, y, z) = z2 k̂ is
conservative (with potential 1

3 z3), so
ş

C1
F̃ ¨ dr =

ş

C2
F̃ ¨ dr for any two curves C1 and C2

from P1 to P2. Compare this to Questions 25 through 26.

H-40: Simplify the answer in part (a) as much as possible.

For part (c), start with B f
By = xe3x2

and B f
Bz = x2 cos(x2z).

For part (d), notice the difference between the given vector field and the conservative
vector field of part (c). The resulting integral can be directly evaluated using methods
from integral calculus.
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H-41: For (b), remember ds
dt =

ˇ

ˇ

ˇ

dr
dt

ˇ

ˇ

ˇ

Is the vector field of part (c) conservative?

H-42: For part (d), what is the difference between J and
ş

C F ¨ dr?
For part (e), many parts of the integral are zero: find as many as you can.

H-43: By Newton’s law of motion, mr2(t) = F(t).

Recall κ(t) = |r1(t)ˆr2(t)|
|r1(t)|3 .

H-44: (a) Remember the arclength of the parametrized path r(t) from t = a to t = b is
given by

şb
a |r1(t)| dt. In this case, |r1(t)| can be simplified considerably.

(b) Remember κ(t) = |r1(t)ˆr2(t)|
|r1(t)|3 .

(c) Gravity is conservative. Friction is not conservative.
(d) What are the tangential and normal components of acceleration?

Hints for Exercises 3.1. — Jump to TABLE OF CONTENTS.

H-1: Your answer will have the form r(x, y) = ψ1(x, y)ı̂ıı + ψ2(x, y)̂ + ψ3(x, y)k̂.

H-3: First think about what properties r(u, v) has to have in order to be a
parametrization.

H-4: First think about what properties r has to have in order to be a parametrization.

H-5: First think about what properties r(u, v) has to have in order to be a
parametrization.

Hints for Exercises 3.2. — Jump to TABLE OF CONTENTS.

H-1: What are the tangent planes to the two surfaces at (0, 0, 0)?

H-2: Apply the chain rule to G
(
r(t)

)
= 0.

H-4: To find a tangent vector to the curve of intersection of the surfaces F(x, y, z) = 0 and
G(x, y, z) = 0 at (x0, y0, z0), use Q[2] twice, once for the surface F(x, y, z) = 0 and once for
the surface G(x, y, z) = 0.

H-5: To find a tangent vector to the curve of intersection of the surfaces z = f (x, y) and
z = g(x, y) at (x0, y0, z0), use Q[2] twice, once for the surface z = f (x, y) and once for the
surface z = g(x, y).

H-10: Review §3.2 in the CLP-4 text.

H-11: Review §3.2 in the CLP-4 text.

H-13: Let (x, y, z) be a desired point. Then

• (x, y, z) must be on the surface and
• the normal vector to the surface at (x, y, z) must be parallel to the plane’s normal

vector.
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H-14: First find a parametric equation for the normal line to S at (x0, y0, z0). Then the
requirement that (0, 0, 0) lies on that normal line gives three equations in the four
unknowns x0, y0, z0 and t. The requirement that (x0, y0, z0) lies on S gives a fourth
equation. Solve this system of four equations.

H-15: Two (nonzero) vectors v and w are parallel if and only if there is a t such that
v = t w. Don’t forget that the point has to be on the hyperboloid.

H-16: (b) If v is tangent, at a point P, to the curve of intersection of the surfaces S1 and S2,
then v

• has to be tangent to S1 at P, and so must be perpendicular to the normal vector to
S1 at P and

• has to be tangent to S2 at P, and so must be perpendicular to the normal vector to
S2 at P.

H-17: The angle between the curve and the surface at P is 90˝ minus the angle between
the curve and the normal vector to the surface at P.

H-18: At the highest and lowest points of the surface, the tangent plane is horizontal.

Hints for Exercises 3.3. — Jump to TABLE OF CONTENTS.

H-1: S is a very simple geometric object.

H-2: The triangle is part of the plane x
a +

y
b +

z
c = 1.

H-3: Flatten S out.

H-8: The total surface area of (b) (ii) can be determined without evaluating any integrals.

H-11: On S, (x, y) runs over the interior of x2 + y2 = 2x, or equivalently, the interior of
(x´ 1)2 + y2 = 1.

H-12: See Example 3.1.5 of the CLP-4 text for a parametrization of the torus.

H-13: Call the part of the sphere in the first octant S. By definition, the centroid is (x̄, ȳ, z̄)
with

x̄ =

ť

S x dS
ť

S dS
ȳ =

ť

S y dS
ť

S dS
z̄ =

ť

S z dS
ť

S dS

The integrals will be easy if you use spherical coordinates. You can reduce the number of
integrals evaluated by using symmetry.

H-14: Before parametrizing the cylinder, express x2 + y2 = 2ay in cylindrical coordinates.

H-16: (a) The integral can be easily evaluated by using that the sphere has surface area
4πa2.

(c) Use cylindrcial coordinates for the top part of the cone.

H-20: Beware of signs. Note that 0 ď z ď 1 on S .
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H-21: The z-coordinate of the centre of mass is the weighted average of the z-coordinate
over the cone. Since a density has not been specified, we assume that it is a constant. We
may take the density to be 1, so the z-coordinate of the centre of mass is

ť

S z dS/
ť

S dS.

H-22: Use cylindrcal coordinates. Note that because of the symmetry of the cone, only
the z-component of the centre of mass requires an integral to be calculated. The
z-coordinate of the centre of mass is the weighted average of the z-coordinate over the
cone. That is z̄ =

ť

S z dS/
ť

S dS.

H-24: Review (3.3.2) in the CLP-4 text.

H-25: Don’t be afraid to tweak spherical coordinates so as to fit the condition
x ěa

y2 + z2 well. To do so, first use a sketch to develop a geometric interpretation of?
y2+z2

x .

H-26: The surface S may be parametrized by observing that, for each fixed y,
x2 + z2 = sin2 y is a circle.

H-27: By symmetry, the centre of mass will lie on the z-axis. By definition, the
z-coordinate of the centre of mass is the weighted average of z over S, which is

z̄ =

ť

S z ρ(x, y, z) dS
ť

S ρ(x, y, z) dS

H-37: You can use the the cylindrical coordinates θ and z to parametrize the hyperboloid.

H-38: (a) Review §3.2 of the CLP-4 text.

(b) Review §3.3.1 of the CLP-4 text.

H-39: (a) Review §2.4.1 in the CLP-4 text.

(b) Use Lemma 2.3.6 of the CLP-4 text to show that the integrand is identically zero.

Hints for Exercises 4.1. — Jump to TABLE OF CONTENTS.

H-2: Compute∇∇∇ˆ F for some simple vector fields.

H-3: For parts(a) and (b), write out the definitions of the left and right hand sides and
observe that they are equal. Part (c) can be done easily by using other, simpler, vector
identities.

H-6: (c) can be done efficiently by using (a) and (b).

H-12: (a) Find the magnitude and direction of the velocity vector. Then verify that ΩΩΩˆ r
has that magnitude and direction.

Hints for Exercises 4.2. — Jump to TABLE OF CONTENTS.

H-3: (b) The integral can be trivially evaluated by exploiting oddness and the fact that
ţ

V dV = Volume(V).
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H-4: For part (a), use spherical coordinates.

H-5: (a) The integral is easier in polar coordinates.

(b) Since x is odd,
ţ

V x dV = 0.

H-6: (a) The integral is easy in polar coordinates.

(b) The volume of the solid can be easily computed by decomposing the solid into thin
horizontal pancakes. See Section 1.6 in the CLP-2 text.

H-7: The divergence theorem, of course.

H-8: It’s easier to use the divergence theorem. But don’t forget the base of the silo.

H-9: The divergence theorem, of course. The integral can be easily evaluated by using
that, for any solid V in R3,

¡

V

dV = Volume(V) x̄ =

ţ

V x dV
Volume(V) ȳ =

ţ

V y dV
Volume(V) z̄ =

ţ

V z dV
Volume(V)

where (x̄, ȳ, z̄) is the centroid of V .

H-10: The complexity of F is a hint that the flux should not be evaluated directly.

H-11: The specified surface is not closed.

H-12: (a), (b), (c) Review warning 4.2.3 in the CLP-4 text.

(d) The divergence theorem can be used — with care.

(e) The equation can be made more understandable by completing a square.

H-13: (a) Use a suitable modification of spherical coordinate. Do not forget to specify the
range of the parameters.

H-14: Don’t evaluate the flux directly.

H-15: For practice, try doing this question twice — once using the divergence theorem
and once using direct evaluation.

H-16: The question highlights that the vector field has divergence 0. Thta’s a big hint.

H-17: As F looks complicated, it is probably wise not to try and evaluate the flux integral
directly.

H-18: As F looks complicated, it is probably wise not to try and evaluate the flux integral
directly.

H-19: The vector field F looks complicated. Try to avoid a direct evaluation of the flux
integral.

H-20: The divergence of F is a lot simpler than F itself. By default, we want the outward
flux.

H-21: The vector field F looks very complicated. That strongly suggests that we not
evaluate the integral directly.
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H-22: The divergence of F is a lot simpler than F itself.

H-23: Note that F(x, y, z) is not defined at (x, y, z) = (0, 0, 0).

H-25: The surface S is not a closed surface.

H-29: The complexity of F is a hint that the flux should not be evaluated directly.

H-31: The flux can be calculated directly, but it is rather easier to calculate it using the
Divergence Theorem.

H-32: Use that y is odd to easily evaluate some integrals.

H-34: (a) Use cylindrical coordinates.

(b) The volume of the V can be easily computed by decomposing V into thin horizontal
washers. See Section 1.6 in the CLP-2 text.

H-35: Review the derivation of the heat equation in Section 4.2.1 of the CLP-4 text.

H-37: Make a judicious choice of parametrization.

H-38: Do not compute the integral directly.

H-39: Be careful about which normals to use in part (c). For practice, try to do part (c) in
two different ways, with one being direct evaluation.

H-40: For part (b), do not evaluate the flux directly. In part (c), the flux can be related to
the volume enclosed by the surface, and the centre of mass of the volume enclosed by the
surface.

H-41: (b) We have several different methods for evaluating flux integrals. Think about
what would be involved in applying each of them before settling on which one to use.

(c) Be sneaky — don’t evaluate this integral directly.

H-42: For parts (b) and (c), write out carefully the integral that the divergence theorem
gives you.

H-43: Note that 22 + 2(12) + 3(1)2 = 9 ă 16 so that (2, 1, 1) is inside S,
while 32 + 2(22) + 3(2)2 = 29 ą 16 so that (3, 2, 2) is outside S.

H-44: Review §4.2.2 in the CLP-4 text.

H-46: Consider very small a’s.

H-47: Carefully draw a side view of S.

H-48: Both the divergence theorem and a vector identity in Theorem 4.1.4 of the CLP-4
text are useful.

H-49: x is an odd function.

H-50: You should be able to guess the centre of mass, (x̄, ȳ) of the disk D. Then the

integrals
ť

D x dxdy and
ť

D y dxdy can be found by using x̄ =
ť

D x dxdy
ť

D dxdy and ȳ =
ť

D y dxdy
ť

D dxdy .
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Hints for Exercises 4.3. — Jump to TABLE OF CONTENTS.

H-2: Let r(s) = x(s) ı̂ıı + y(s) ̂ be a counterclockwise parametrization of C by arc length.
Then T̂(s) = r1(s) = x1(s) ı̂ıı + y1(s) ̂ is the forward pointing unit tangent vector to C at
r(s) and n̂(s) = r1(s)ˆ k̂ = y1(s) ı̂ıı´ x1(s) ̂. To see that r1(s)ˆ k̂ really is n̂(s), note that
y1(s) ı̂ıı´ x1(s) ̂

• has the same length, namely 1, as r1(s) (recall that r(s) is a parametrization by arc
length),
• lies in the xy-plane and
• is perpendicular to r1(s). (Check that r1(s) ¨ [y1(s) ı̂ıı´ x1(s) ̂

]
= 0.)

• Use the right hand rule to check that r1(s)ˆ k̂ is n̂ rather than ´n̂.

H-3: Use direct evaluation!

H-4: The functions x
x2+y2 and ´y

x2+y2 are not defined, let alone continuous or differentiable,
at x = y = 0.

H-5: For practice, evaluate this integral twice — once directly and once using Green’s
theorem.

H-6: The sin y2 and cos y2 in the integrand look hard to integrate. Try Green’s theorem.

H-7: Don’t do the integral directly.

H-8: Don’t do the integral directly. Sketch the rectangle.

H-9: Do not compute the integral directly.

H-10: Don’t do the integral directly. Sketch the triangle.

H-11: The integrand for direct evaluation looks complicated — don’t evaluate this
integral directly.

H-12: Direct evaluation is not the most efficient method available.

H-13: Green’s theorem must be applied to a closed curve; note that the curve C is not
closed.

Consider carefully the point (0, 0) in your analysis.

You may use the fact that
ş dt

1+t2 = arctan(t) + C.

H-14: If we were to try to evaluate this integral directly, then on the y = x2 ´ 4x + 3 part
of C, the integrand would contain x2ey = x2ex2´4x+3. That looks hard to integrate, so try
Green’s theorem.

H-15: Beware the point (0, 0).

H-18: It is possible to evaluate this integral by three different methods, one of them being
direct evaluation (though it requires some ingenuity). Try to find all three.

H-20: Write
ű

C F ¨ dr´ A
ű

C G ¨ dr =
ű

C(F´ AG) ¨ dr.

H-21: Note that F(x, y) is not defined at (x, y) = (0, 0).
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H-22: Note that F(x, y) is not defined at (x, y) = (0, 0).

H-24: (a) All points on the curve obey an equation that contains x’s and y’s, but no z’s.

(b) Exploit conservativeness as much as possible.

H-25: Use Green’s theorem to convert the integral over C into an integral over the region
R in the xy-plane whose boundary is C. Consider the sign of the integrand of the integral
over R.

Hints for Exercises 4.4. — Jump to TABLE OF CONTENTS.

H-1: One approach is to first do

S

∂S

Then imagine slowly deforming the sketch to the get specified S’s

H-2: Define the vector field F(x, y, z) = F1(x, y) ı̂ıı + F2(x, y) ̂.

H-3: First verify the vector identity∇∇∇ˆ [φ∇∇∇ψ + ψ∇∇∇φ] = 0

H-4: To parametrize the curve x2 + y2 = 1, z = y2, first parametrize the circle x2 + y2 = 1.
That is, find x(t) and y(t) obeying x(t2) + y(t)2 = 1. Then set z(t) = y(t)2.

H-5: Apply Stokes’ theorem. Note that r(t) = x(t) ı̂ıı + y(t) ̂ + z(t) k̂ obeys
x(t) + y(t) + z(t) = 3, for every t, and that x(t) ı̂ıı + y(t) ̂ = (1 + cos t) ı̂ıı + (1 + sin t) ̂ runs
counterclockwise around the circle of radius 1 centered on (1, 1).

H-6: The form of the integral should be quite suggestive.

H-7: The form of the integral should be quite suggestive.

H-8: What’s the title of this section?

H-9: We are to evaluate a flux integral of the form
ť

S∇∇∇ˆ F ¨ n̂ dS. Sure looks like one
side of Stokes’ theorem.

H-10: The vector field F looks too complicated for a direct evaluation of the line integral.
So, try Stokes’ theorem.

H-16: All three vertices of part (a) lie in the plane of part (b).

H-17: The curve C is the boundary of a surface. To guess the surface express the z
component of r(t) in terms of the x and y components.

H-18: The fact that the surface is not completely specified is a big hint.

H-19: We are to evaluate the line integral of a complicated vector field around a relatively
complicated closed curve. (Sketch it!) That certainly suggests that we should not try to
evaluate the integral directly.
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H-20: The integral looks messy. Compute the curl of F to help gauge if Stokes’ theorem
would be easier.

H-21: The form of the integrand is sugestive.

H-26: Let D be the disk in the plane x + y + z = 3 whose boundary is C. Suppose that, as
(x, y, z) runs over D, (x, y) runs over the ellipse Dxy. We are told that the area of D is
πR2, but we are not told the area of D1. So it is easier to deal with the integral

ť

D dS than
with the integral

ť

D1 dxdy.

H-29: Given the form of F, direct evaluation looks hard.

The integral evaluations can be greatly simplified by using that the centroid (x̄, ȳ) of any
region R in the xy-plane is

x̄ =

ť

R x dx dy
Area(R)

ȳ =

ť

R y dx dy
Area(R)

H-30: Part (a) is a hint for part (b). Sketch the curve in part (b).

H-31: For practice, evaluate the flux of part (a) twice — once by direct evaluation and
once using Stokes’ theorem.

H-32: By definition, D is connected if any two points in D can be joined by a curve that
lies completely in D.

By definition, D is simply connected if any simple closed curve in D can be shrunk to a
point continuously in D.

H-33: Review §4.1.2 in the CLP-4 text.

H-34: Considering that there are ten line segments in C, it is probably not very efficient to
use direct evaluation.

H-35: Direct evaluation looks hard.

H-36: Rewrite
ű

C E ¨ dr as a surface integral.

H-37: What is x(t)2 + y(t)2 + z(t)2 = 2? How is x(t) relatex to z(t)?

H-38: The intersection of the plane x + y + z = 1 with the sphere x2 + y2 + z2 = 1 is a
circle. Use symmetry to guess the centre of the circle.

H-39: Sketch S.

H-40: You can avoid evaluating any integral by identifying S1 as a simple geometric
figure.

Hints for Exercises 5. — Jump to TABLE OF CONTENTS.

H-2: Read (d), (e), (f), (g), (h) very carefully.

H-3: Beware that in part (f) a surface is defined to be closed if and only if it is the
boundary of a solid region E. Even though that is not the usual definition, it is be used in
this question.
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H-4: (b) In general, for which values of x is the curvature of y = f (x) zero?

(c) First parametrize x2 + z2 = 1.

(d) First determine when r(u, v) has z = 0.

(e) What type of curve has curvature zero?

(f) What theorem relates the divergence of a vector field with flux integrals of the vector
field?

(g) What is the screening test for conservativeness in two dimensions?

(h) What is the definition of “parametrized by arclength”?

(i) What theorem relates line integrals to curls?

(j) What theorem relates flux integrals to divergences?

(k) Use Stokes’ theorem.

H-5: Read all of the statements very carefully. The details are critical.

(a) Note the word anywhere.

(b) If you have not learned about simply connected domains, skip this part. If you have,
read the statement very carefully.

(d) If you have not learned about Kepler’s three laws, skip this part.

(h) Read the statement very carefully. It does not specify that C is closed.

(i) Review §1.5 of the CLP-4 text.

H-8: Read all of the statements very carefully. The details are critical.

For part (d), note that the curve need not lie in a plane.

For part (g), note that the domain can have holes in it.

For parts (h) and (i), by definition, D is simply connected if any simply closed curve in D
can be shrunk to a point continuously in D.

H-9: Read all of the statements very carefully. The details are critical.

For part (b), note that the curve need not lie in a plane.

For part (d), note that the domain can have holes in it.

For parts (i) and (j), by definition, D is simply connected if any simply closed curve in D
can be shrunk to a point continuously in D.

H-10: Read all of the statements very carefully. The details are critical.

(a) The integral
ş

C f ds = 0 is not of the form
ş

C F ¨ dr.

(d) F and G can be any vector fields.

(e) Think about how
ş

C f ds is defined.

(f) Look at Br
Bu ˆ Br

Bu very closely.
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(g) The integral is completely independent of x(u, v) and y(u, v).

H-11: Read all of the statements very carefully. The details are critical.

(b) Read the statement very carefully. “simply connected” plays no role here. The vector
field F is not required to be conservative.

(e) Recall that S is closed when it is the boundary of a solid region V.

(g) Assume that the constant |v| is not zero.

(j) If you have not learned about Kepler’s three laws, skip this part.

H-13: (g) Be careful. The power in the denominator is important.

(j) Beware the sign.

H-20: Review Corollary 4.3.5 in the CLP-4 text.

H-21:

(b)
ť

S∇∇∇ˆ F ¨ n̂ dS is a flux integral over the closed surface S.

(c) Consider
ű

C F ¨ dr´ ű

C G ¨ dr =
ű

C(F´G) ¨ dr.
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ANSWERS TO PROBLEMS

Part III
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Answers to Exercises 1.1 — Jump to TABLE OF CONTENTS

A-1: (a) r(y) =
a

a2 ´ y2 ı̂ıı + y ̂, 0 ď y ď a

(b)
(
x(φ), y(φ)

)
=
(
a sin φ,´a cos φ

)
, π

2 ď φ ď π

(c)
(
x(s), y(s)

)
=
(
a cos(π

2 ´ s
a ), a sin(π

2 ´ s
a )
)
, 0 ď s ď π

2 a

A-2: (1, 25), (´1/
?

2, 0), (0, 25).

A-3: The curve crosses itself at all points (0, (πn)2) where n is an integer. It passes such a
point twice, 2πn time units apart.

A-4: (a) (a + aθ, a) (b)(a + aθ + a sin θ, a + a cos θ)

A-5: z = ´1
2

b

1´ y2

2 ´ y
4

A-6: The particle is moving upwards from t = 1 to t = 2, and from t = 3 onwards. The
particle is moving downwards from t = 0 to t = 1, and from t = 2 to t = 3.

The particle is moving faster when t = 1 than when t = 3.

A-7:

r(t + h)

r(t)

r(0)

The red vector is r(t + h)´ r(t). The arclength of the segment indicated by the blue line
is the (scalar) s(t + h)´ s(t).

Remark: as h approaches 0, the curve (if it’s differentiable at t) starts to resemble a
straight line, with the length of the vector r(t + h)´ r(t) approaching the scalar
s(t + h)´ s(t). This step is crucial to understanding Lemma 1.1.3 in the CLP-4 text.

A-8: Velocity is a vector-valued quantity, so it has both a magnitude and a direction.
Speed is a scalar — the magnitude of the velocity. It does not include a direction.

A-9: (c)

A-10: See the solution.

A-11: (d)
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A-12: velocity = ´a sin t ı̂ıı + a cos t ̂ + c k̂ speed =
?

a2 + c2

acceleration = ´a cos t ı̂ıı´ a sin t ̂

The path is a helix with radius a and with each turn having height 2πc.

A-13: (a) T̂(1) = (2,0,1)
?

5
(b) 1

3

[
53/2 ´ 8

]

A-14: 2

A-15: length =
?

a2 + b2 T

A-16: 1

A-17: (a) 20/3 (b) x(t) = ´2π ´ 2t, y(t) = ´2πt, z(t) = π3/3 + π2t

A-18: (a) r1(t) =
(´ 3 sin t, 3 cos t, 4

)
(b) 5

A-19: (a) x(θ) = 3 cos θ, y(θ) = 3 sin θ, z(θ) = 6 cos θ + 9 sin θ, 0 ď θ ď 2π

(b) s =
ş2π

0

?
45 + 45 cos2 θ ´ 108 sin θ cos θ dθ

A-20: (a) 1
27

(
10
?

10´ 1
)

(b) 2
27

(
10
?

10´ 1
)

A-21: s(t) = t3

3 + t
2

A-22: 8
27

[(
2 + 9

4 bm
)3/2

´
(

2 + 9
4 am

)3/2]

A-23: (a) r(x) = x ı̂ıı +
?

x ̂ + 2
3 x3/2 k̂ (b) 21 (c) 6 ı̂ıı + 3 ̂ + 6 k̂ (d) ´6 ı̂ıı´ 12 ̂ + 12 k̂

A-24: |t|
A-25: (a) r(u) = u3 ı̂ıı + 3u2 ̂ + 6u k̂ (b) 7 (c) 2 (d) 1

A-26: (a) r(t) =
(

π2t
2 ´ t3

2

)
ı̂ıı + (t´ sin t) ̂ +

(
1
2 e2t ´ t

)
k̂ (b) t = π

(c) ´π2 ı̂ıı + 2 ̂ +
(
e2π ´ 1

)
k̂

A-27: (a) 21 (b) 6 (c) 2ı̂ıı + 4 ̂ + 4 k̂ (d) ´8
3

(
2ı̂ıı + ̂´ 2 k̂

)

A-28: x(t)y1(t)´y(t)x1(t)
x2+y2

A-29: Volume: 540π Surface area: 360π

A-30:
50

π
b

9 + 1
400π2

« 5.3 cm

A-31: r(t) = r0 ´ e´αt´1
α v0 + g 1´αt´e´αt

α2 k̂

Answers to Exercises 1.2 — Jump to TABLE OF CONTENTS

A-1: t´ 1

A-2:
(
sin(1/2), cos(1/2),

?
3/2

)
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A-3: A

A-4: (a)
(

3/4 , ´?3/4 , ´1/2
)

(b) R(s) =
(
2 sin3(s/3), 2 cos3(s/3), 3 sin(s/3) cos(s/3)

)

A-5: (a)
?

2 (b) s?
2

(
cos

(
ln
(

s?
2

))
, sin

(
ln
(

s?
2

)))

A-6: (cos z, z sin z, z) for 0 ď z ă π/2. The curve is (the first quarter-turn of) a spiral,
with width in the x-direction 2, and increasing width in the y-direction. The parameter z
is the height, as well as a radian measure for the spiral.

A-7: R(s) =
$

&

%

(
1
2

[
(2
?

2´ 3s)2/3 ´ 1)
]

,´1
3

[
(2
?

2´ 3s)2/3 ´ 1
]3/2

)
when s ď 1

3(2
?

2´ 1)(
1
2

[
(3s + 2´ 2

?
2)2/3 ´ 1

]
, 1

3

[
(3s + 2´ 2

?
2)2/3 ´ 1

]3/2
)

when s ą 1
3(2
?

2´ 1)

Answers to Exercises 1.3 — Jump to TABLE OF CONTENTS

A-1:

x

y

1

T̂

N̂

ρ = 3, κ = 1
3

A-2: T̂(t) = (cos t,´ sin t), T̂(s) = (cos(s/3),´ sin(s/3)),
N̂(t) = (´ sin t,´ cos t), N̂(s) = (´ sin(s/3),´ cos(s/3))

A-3: lim
tÑ8

κ(t) = 0

A-4: ds
dt =

?
e2t + 9 + cos2 t

A-5: dT̂
dt = 1?

2

(´ sin t´ cos t , ´ sin t + cos t
)

dT̂
ds = 1?

2 s

(´ sin
(
ln
(
s/
?

2
))´ cos

(
ln
(
s/
?

2
))
) , ´ sin

(
ln
(
s/
?

2
))

+ cos
(
ln
(
s/
?

2
)))

A-6: See the solution.

A-7:

A. v(t) = (et, 2t + 1)

B. a(t) = (et, 2)

C. ds
dt =

a

e2t + (2t + 1)2

D. T̂(t) =

(
et

a

e2t + (2t + 1)2
,

2t + 1
a

e2t + (2t + 1)2

)

120



E. κ(t) =
et|1´ 2t|

(e2t + (2t + 1)2)3/2

A-8: κ(t) = 1?
2

A-9: κmax = a
b2 , κmin = b

a2 .

A-10: (a) κ(0) = 2´3/2 (b) (x + 2)2 + (y´ 3)2 = 8

A-11: (a)

x

y

2π 4π

r(t) =
(
t− sin t , 1− cos t

)

(b) κ(t) = 1
23/2

?
1´cos t

(c) 4 (d) (x´ π)2 + (y + 2)2 = 16

A-12: κ(s) = πs

A-13: The maximum values occur at (x, y) = ˘(1/ 4
?

5 , 1
35´3/4).

The limits limxÑ˘8 κ(x) = 0.

Answers to Exercises 1.4 — Jump to TABLE OF CONTENTS

A-1:

T̂

N̂

B̂ points out of the page (towards the reader).

A-2: arclength

A-3: a(t) and b(t) have negative torsion, c(t) has zero torsion.

A-4:

A-5: (a), (b)
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z

y

x

x = y

z = x2 + y2

T̂N̂

B̂

(c) The torsion is zero.

A-6: (a) r1(t) =
(
et + e´t) ı̂ıı +

(
et ´ e´t) ̂ + 2 k̂, r2(t) =

(
et ´ e´t) ı̂ıı +

(
et + e´t) ̂,

κ(t) = 1
2+e2t+e´2t

(b)
?

2
[
e´ 1

e

]

A-7: 3
181

A-8: T̂(t) = ı̂ıı+t ̂+t2 k̂?
1+t2+t4

B̂(t) = t2 ı̂ıı´2t ̂+k̂?
1+4t2+t4

N̂(t) = ´(t+2t3) ı̂ıı+(1´t4) ̂+(2t+t3)k̂?
1+t2+t4

?
1+4t2+t4

κ(t) =
?

1+4t2+t4

[1+t2+t4]3/2 τ(t) = 2
1+4t2+t4

A-9: When c = 0, the plane is z = 1.
When c = 1/5, the plane is (1/25)x + 3y´ (30/e)z = ´10.

A-10: (a) 2x + y + 3z = 6 (b) κ(t) = 2
?

1+9t2+9t4

[1+4t2+9t4]3/2

A-11: (a) 2 (b) ´
?

3
2 ı̂ıı´ 1

2 ̂ + π
6 k̂ (c) B̂ = 1

2
?

2
ı̂ıı´

?
3

2
?

2
̂ + 1?

2
k̂

A-12: (a) R(t) = (´1, 0, π2) + t(0,´1, 2π) (b) aT(t) = 4t?
1+4t2

A-13: (a)
?

5 t (b) aT(t) = sin t ı̂ıı + cos t ̂ + 2 k̂ (c) aN(t) = t cos t ı̂ıı´ t sin t ̂

(d) κ(t) = 1
5t

A-14: (a) r(θ) = [´1 + 3 cos θ] ı̂ıı + 3 sin θ ̂ + [10´ 6 cos θ] k̂, 0 ď θ ă 2π

(b) At (2, 0, 4), T̂ = ̂, N̂ = ´ı̂ıı+2k̂?
5

, B̂ = 2ı̂ıı+k̂?
5

, κ(0) =
?

5
3

A-15: (a) T̂(t) = t2 ı̂ıı+
?

2 t ̂+k̂
t2+1 (b)

?
2

(t2+1)2 (c) 4 ı̂ıı´3
?

2 ̂´4k̂
?

50

A-16: (a) One possible parametrization is r(θ) = cos θ ı̂ıı + sin θ ̂ + (1´ cos θ ´ sin θ) k̂
with 0 ď θ ď 2π.
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(b) κ(θ) =
?

3
[2´sin(2θ)]3/2

(c) maximum curvature =
?

3 at ı̂ıı?
2
+ ̂
?

2
+ (1´?2) k̂ and ´ ı̂ıı?

2
´ ̂
?

2
+ (1 +

?
2) k̂

minimum curvature = 1
3 at ´ ı̂ıı?

2
+ ̂
?

2
+ k̂ and ı̂ıı?

2
´ ̂
?

2
+ k̂

A-17: T̂(t) = 2t2 ı̂ıı+2t ̂+k̂
2t2+1 N̂(t) = 2t ı̂ıı´(2t2´1) ̂´2t k̂

2t2+1 κ(t) = 2t
(2t2+1)2

A-18: (a) 1
3

[
23/2 ´ 1

]
(b) ´ı̂ıı´̂

?
2

(c) 1
2

A-19: (a) v(t) =
(
1 , ´1 , t

)
(b) ds

dt (t) =
?

2 + t2 (c) a(t) =
(
0 , 0 , 1

)

(d) κ(t) =
?

2
[2+t2]3/2 (e) N̂(t) = (´t , t , 2)?

2(2+t2)
(f) x + y = 3 (g) (2, 1, 2)

A-20: (a) T̂(t) = t2 ı̂ıı+
?

2t ̂+k̂
t2+1 (b) κ(t) =

?
2

(t2+1)2 (c) κ(0) =
?

2 (d) N̂(0) = ̂

(e) B̂(0) = ´ı̂ıı

A-21: (a) x = 1´ 2t, y = ´1 + t, z = ´1 + 3t (b) 3x´ 3y´ z = ´1

A-22: (a)
?

5 π2

2 (b) κ(t) = 1
5t

A-23: (a) 8 (b) T̂(1) = 1?
2
(1, 1, 0), N̂(1) = (0, 0,´1) (c) κ(1) = 1

8

A-24: (a) 5
2

(b) T̂
(

π/6
)
= 1

5

(
´ 3

2 , 3
?

3
2 , 4

)
, N̂
(

π/6
)
= 1

2

(?
3, 1, 0

)
, B̂(π/6

)
= 1

5

(´ 2, 2
?

3,´3)

A-25: (a) r(θ) = cos θ ı̂ıı + sin θ ̂ + cos(2θ) k̂ 0 ď θ ă 2π (b) 1
5

(c) z =
?

2 x´?2 y

(d) radius 1/κ(π/4) = 5 and centre
(´ 2

?
2 , ´2

?
2 , 0

)

A-26: 4
9(ı̂ıı´ 4 ̂ + k̂)

A-27: (a) T̂(t) = ı̂ıı+t̂+
?

3tk̂
?

1+4t2 (b) N̂(t) = ´4t ı̂ıı+̂+
?

3k̂
2
?

1+4t2 (c) 3© (d) ´?3y + z = 0

(e) κ(t) = (1 + 4t2)
´3/2

(f) The curvature κ(t) achieves its maximum value at r(0) = (0, 0, 0).

(g) The curvature never achieves a minimum.

(h) ı̂ıı = u
2 , ̂ = v´

?
3 w

4 , k̂ =
?

3 v+w
4 , r(t) = t u + t2 v
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u

v

x

y

y = x2

C

The curve
(
a(t), b(t)

)
= (t, t2) is the curve y = x2. It is “curviest” at the origin, which is

consistent with part (f). It becomes flatter and flatter as |t| increases, but never achieves
“perfect flatness”, which is consistent with (g).

A-28: See the solution.

A-29: (a) T̂ = 1?
6

(
0, 2,´?2

)
, N̂ = ´ 1?

39

(
6, 1,

?
2
)
, B̂ = 1?

13

(´ 1, 2, 2
?

2
)
, κ =

?
13

3
?

3
=

?
39
9

(b) (i) dv
dt = 5

?
2?

3
(ii) v = (0,

?
2,´1).

A-30: (a) v(t) =
(´ sin t , cos t , c cos t

)
, a(t) =

(´ cos t , ´ sin t , ´c sin t
)

(b) v(t) =
?

1 + c2 cos2 t (c) ´c2 sin t cos t?
1+c2 cos2 t

(d) The curve lies on the plane z = cy.

A-31: (a)
?

17
4 (b) 4?

17
(c) (i) 4

?
π (ii)

(
16π , ´4 , ´4π

)
(iii) 4

?
17 π

Answers to Exercises 1.6 — Jump to TABLE OF CONTENTS

A-1:
ş

C ds

A-2: (a) See the solution. (b) 8

A-3: 4
21
?

3
(27 ´ 1) + 2

5
?

3
(25 ´ 1)

A-4: π kg

A-5: 26

A-6: (a) 53/2´1
12 (b) 8´33/2

3/2

A-7: 1
2 ln 2

A-8: (a) r(t) = t ı̂ıı +
(

1 + t2

2

)
̂ + sin t k̂ (b) r(π/2) = π

2 ı̂ıı +
(

1 + π2

8

)
̂ + k̂ (c)

π2

8 ´ 1
2

A-9: 2e3

A-10: (a) 1?
1+5π2

(´ ı̂ıı´ π ̂ + 2π k̂
)

(b) 1
15

[
(1 + 5π2)3/2 ´ 1

]
(c) z = x2 + y2

(d)
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z

y
x

A-11:
(

412
55 ,´92

55 , 4736
693

)

Answers to Exercises 1.7 — Jump to TABLE OF CONTENTS

A-1:

´mĝ

WN̂

A-2: time

A-3: positive

A-4: y = E
mg — just like a circular culvert (if the culvert is high enough).

A-5: 2940 J

A-6: at least 5
?

9.8 m/s

A-7:
(
´ 3?

2
+ 2.352 , ´ 5?

2
+ 3.92 , ´ 2

?
2 + 3.136

)

A-8:
c

9.8?
6

(
100 + 1?

2

)
« 20 m/s

A-9: |v| ą 504 kph

A-10: U = mg dy
ds

A-11: (a) M = mĝ ¨ T̂ (b) negative (c) ´1960?
3
« ´1131.6 N

A-12: (a) yS = E
mg (b) 24(E´mgyA)(

9+7
(

yA´3
3

)2
)3/2 = 4mg




yA´3
3

c

9+7
(

yA´3
3

)2


 (or equivalent)

(c) The skateboarder makes it up to the ceiling, but falls off rather than making it all the
way around. Ouch.

A-13: (a), (b) See the solution. (c) 2
[

a2+b2

gb π
]1/2
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Answers to Exercises 1.8 — Jump to TABLE OF CONTENTS

A-1: The left hand sketch below contains the points, (x1, y1), (x3, y3), (x5, y5), that are on
the axes. The right hand sketch below contains the points, (x2, y2), (x4, y4), that are not
on the axes.

x

y

π
2π (3, 0)

(0, 1)

(−2, 0)

x

y
(1, 1)

√
2

(−1, 1)

π
4

3π
4

r1 = 3, θ1 = 0 r2 =
?

2, θ2 = π
4 r3 = 1, θ3 = π

2 r4 =
?

2, θ4 = 3π
4

r5 = 2, θ5 = π

A-2: (a)
(
r = 2 , θ = nπ, n odd integer

)
or
(
r = ´2 , θ = nπ, n even integer

)

(b)
(
r =

?
2 , θ = π/4 + 2nπ

)
or
(
r = ´?2 , θ = 5π/4 + 2nπ

)
, with n integer.

(c)
(
r =

?
2 , θ = 5π/4 + 2nπ

)
or
(
r = ´?2 , θ = π/4 + 2nπ

)
, with n integer.

A-3: (a) Both êr(θ) and êθ(θ) have length 1. The angle between them is π
2 . The cross

product is êr(θ)ˆ êθ(θ) = k̂.

(b) Here is a sketch of (xi, yi), êr(θi), êθ(θi) for i = 1, 3, 5 (the points on the axes)

x

y

(3, 0)

(0, 1)

(−2, 0) er(0)

eθ(0)

er(
π
2
)

eθ(
π
2
)

er(π)

eθ(π)

and here is a sketch (to a different scale) of (xi, yi), êr(θi), êθ(θi) for i = 2, 4 (the points off
the axes).

x

y

(1, 1)(−1, 1)

er(
π
4
)eθ(

π
4
)er(

3π
4
)

eθ(
3π
4
) π

4

3π
4
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A-4: (a)Ø (E) (b)Ø (B) (c)Ø (F) (d)Ø (C) (e)Ø (A) (f)Ø (D)

A-5: κ(θ) =

ˇ

ˇ f (θ)2+2 f 1(θ)2´ f (θ) f 2(θ)
ˇ

ˇ

[ f (θ)2+ f 1(θ)2]3/2

A-6: κ(θ) = 3
23/2a

?
1´cos θ

= 3
2
?

2ar(θ)

Answers to Exercises 2.1 — Jump to TABLE OF CONTENTS

A-1: v(x, y) ¨ ı̂ıı

$

’

&

’

%

ą 0 when x ą 0
= 0 when x = 0
ă 0 when x ă 0

,

/

.

/

-

and v(x, y) ¨ ̂

$

’

&

’

%

ą 0 when ´2 ă x ă 2
= 0 when x P t´2, 2u
ă 0 when x ă ´2 or x ą 2

,

/

.

/

-

at least for (x, y) shown in the sketch.

A-2: v(x, y) ¨ ı̂ıı

$

’

’

&

’

’

%

ą 0 when y ą ´x

= 0 when y = ´x

ă 0 when y ă ´x

,

/

/

.

/

/

-

and v(x, y) ¨ ̂

$

’

’

&

’

’

%

ą 0 when y ă x

= 0 when y = x

ă 0 when y ą x

,

/

/

.

/

/

-

at

least for (x, y) shown in the sketch.

A-3: v(x, y) = ´y?
x2+y2 (x, y)

A-4: P ą 0 Q ą 0 BQ
Bx ă 0 BQ

By ą 0

A-5: (a) (1.01 , 1.01) (b) (0 , 0) (c) (0 , 0)

A-6: (0 , ´10)

A-7: v(x, y) = ´y?
x2+y2 (x, y)

A-8: If your face is at the origin, then v(x, y, z) = ´ α
x2+y2+z2 (x, y, z) for some positive

constant α.

A-9:
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x

y

A-10:

x

y

A-11:
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x

y

A-12:

x

y

A-13:
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(a)

x

y
(b)

x

y

(c)

x

y

A-14: f(x, y) = ´5G(x,y)
(x2+y2)3/2 +

3G(2´x,3´y)
((x´2)2+(y´3)2)3/2 +

7G(4´x,´y)
((x´4)2+y2)3/2

A-15: a. v(p) =
((

1´ p
2

) 1
2
?

3
, ´ p

4

)
b. V(x, y, z) =

(´ x
6 ,´y

6 , z
2

)
or equivalent

Answers to Exercises 2.2 — Jump to TABLE OF CONTENTS

A-1:

x

y

1

2

3

1 2 3

A-2: v(x, y) = (´x´ y , x´ y)
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A-3: (a) x2

2 = y2

2 + C

(b)

A-4: x = y2, z = ey

A-5: The field lines are y = C1x3 with C1 a nonzero constant, as well as x = 0 and y = 0.

Answers to Exercises 2.3 — Jump to TABLE OF CONTENTS

A-1: In general, false.

A-2: a. C b. B c. C d. B

A-3: Let ϕ be a potential for F. Define φ = ϕ + ax + by + cz. Then
∇∇∇φ =∇∇∇ϕ + (a, b, c) = F + (a, b, c).

A-4:

a. If F + G is conservative for any particular F and G, then by definition, there exists a
potential ϕ with F + G =∇∇∇ϕ.

Since F is conservative, there also exists a potential ψ with F =∇∇∇ψ.

But now G = (F + G)´ F =∇∇∇ϕ´∇∇∇ψ =∇∇∇(ϕ´ ψ). That means the function (ϕ´ ψ)
is a potential for G. However, this is impossible: since G is non-conservative, no
function with this property exists.

So it is not possible that F + G is conservative. It must be non-conservative.

b. Counterexample: if F = ´G, then F + G = 0 =∇∇∇c for any constant c.
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c. Since both fields are conservative, they both have potentials, say F =∇∇∇ϕ and
G =∇∇∇ψ. Then F + G =∇∇∇ϕ +∇∇∇ψ =∇∇∇(ϕ + ψ). That is, (ϕ + ψ) is a potential for
F + G, so F + G is conservative.

A-5: Yes, F is conservative on D. A potential is ϕ(x, y) = arctan y
x .

A-6: ϕ = 1
2 x2 + xy´ 1

2 y2

A-7: ϕ = ln |x| ´ x
y

A-8: None exists: BF2
Bz = 1

3 x3, while BF3
By = 1

3 x3 + 1, so F fails the screening test,
Theorem 2.3.9.

A-9: ϕ = 1
2 ln(x2 + y2 + z2)

A-10: (a) F is conservative with potential φ(x, y, z) = 1
2 x2 ´ y2 + 3

2 z2 + C for any constant
C.

(b) F is not conservative.

A-11: (a) A = 2, B is arbitrary.

(b) ϕ(x, y, z) = xe(z
2) + By2z3 + C for any constant C.

A-12: v = m xı̂ıı+ŷ
x2+y2 ϕ = 1

2 m ln(x2 + y2) + C for any constant C

A-13: It can never escape the sphere centred at the origin with radius
?

20.

A-14:
?

14

A-15: ϕ = f 2(x) + g(y)h(z) is a potential for F, so F is conservative.

A-16: The line through the origin in the direction of the vector (2, 1, 2).

Answers to Exercises 2.4 — Jump to TABLE OF CONTENTS

A-1: 1
6

A-2: a. A b. B c. A d. B

A-3: 0

A-4: 5

A-5: a = 1, b = c = 0

A-6: (a) Not conservative (b) Not conservative (c) Not conservative (d)
Conservative

A-7: (a) The (largest possible) domain is D =
 

(x, y, z)
ˇ

ˇ x2 + y2 ‰ 0
(

.

(b)∇∇∇ˆ F = 0 on D (c)
ş

C F ¨ dr = 4π (d) F is not conservative.

A-8: 91
2 for all paths from (1, 0,´1) to (0,´2, 3)

A-9: 2(e´ 1) + π2

2 + 3π
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A-10: (a) ´1
4 (b) ´1

A-11: ´40
3

A-12: a = 1, b = c = 0

A-13: (a) λ = ´1 (b) φ(x, y, z) = 2x3yz2 ´ xyz + y2 + K, for any constant K

(c) e2 + 2e´ 2

A-14: 7
3

A-15: 1
3

[
1´ 1

23/2

] « 0.2155

A-16: π3

8 + π2

4 ´ 1

A-17: ´2
3

A-18: The line integral is independent of path because it is of the form
ş

C F ¨ dr with F
being a conservative field. The value of the integral is 1 + π

2 .

A-19: 1
2

A-20: πeπ

A-21: (a) α = 1, β = γ (b) ee ´ β(e + 1)

A-22: (a) 0 (b) Yes. In fact F =∇∇∇ f with f = sin x + 2y´ cos y + ez. (c) ´4

A-23: (a)∇∇∇ˆ F = 0. F is conservative. (b)
ş

C F ¨ dr = 2π2

A-24: (a) a = ´1, b = 3 (b) f (x, y, z) = xyex + yz3 + C works for any constant C

(c) πeπ ´ 2 (d) πeπ ´ 32
15

A-25: (a) A = 2, B = 3 (b) ϕ(x, y, z) = xy2e3z + x2y3 is one allowed scalar potential.

(c) 6 + e´ 2[e´ 1] = 8´ e « 5.2817

A-26: (a) a = π, b = 3 (b) ϕ(x, y, z) = x2 sin(πy)´ xez ´ 3yez + C for any constant C

(c) ´8 (d) ´13
2

A-27: (a) f (x, y, z) = yeyz + y cos2 x + C works for any constant C

(b) 2eπ ´ e´π2 ´ 1

A-28: (a) 0.

(b) F is conservative with potential ϕ(x, y, z) = x2 + y2 + z2. So the integral is
ϕ(a1, a2, a3)´ ϕ(0, 0, 0) = a ¨ a.

A-29: (a)∇∇∇ˆ F = 0 (b) πe
2 ´ 1

A-30: (a), (b) f (x, y) = y sin(x2) + cos(y) + C is a potential for any constant C. Because F
has a potential, it is conservative.

(c) ´1´ π
2 sin(1)
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A-31: (a) p = 2, m = 2, n = 2, but q P R is completely free (b) 4q

A-32: (a) 2
3

[
143/2 ´ 1

] « 34.26 (b) sin 1 + 3
2 « 2.3415

A-33: 2π + 1
3

A-34: (a) 18 (b) 3´ e

A-35: (a) r(t) = t ı̂ıı +
(
1 + t2

2

)
̂ + sin t k̂ (b) r1 = π

2 ı̂ıı +
(
1 + π2

8

)
̂ + k̂ (c) π2

8 ´ 1
2

A-36: (a) -5

(b) One possibility is the path consisting of the line segment from (2, 2) to (2,´3),
followed by the line segment from (2,´3) to (1,´3), followed by the line segment from
(1,´3) to (1, 1).

Another possibility is the path from (2, 2) to (1, 1) along the parabola 27x2 ´ 80x + 54.

A-37: One possibility is the path consisting of the line segment from (0, 0) to (0, 1),
followed by the line segment from (0, 1) to (2, 1), followed by the line segment from
(2, 1) to (2, 0).

Another possibility is the path tracing out the half ellipse
(

cos t + 1 , 4
π sin t

)
, with t

running from π to 0.

A-38: See the solution.

A-39: a = 4

A-40: (a)∇∇∇ˆ F = [´(b + 2)x cos(x2z) + (b + 2)x3z sin(x2z)] ̂ + (6´ a)x2e3x2
k̂

(b) a = 6, b = ´2 (c) f (x, y, z) = xye3x2
+ sin(x2z) + C for any constant C

(d) 1
3 e3 + sin 1´ 1

3

A-41: (a) 23
15 = 1.53̇ (b) 2

3

[
143/2 ´ 1

] « 34.26 (c) sin 1 + 3
2 « 2.3415

A-42: (a) A = ´4, B = ´2 (b) ϕ(x, y, z) = ´x4y2z + yz3 + C with C being an arbitrary
constant. (c) ´2 (d) ´37

24 « ´1.5417 (e) 1
2

A-43: (a) v(t) =
(
t2 , t3 , ´t2) (b) r(t) =

(
t3

3 + 1 , t4

4 + 2 , ´ t3

3 + 3
)

(c) κ(t) =
?

2
t2(2+t2)3/2

(d) 2T4 + T6

A-44: (a) 8 (b) 1
8 (c) ´16

5 (3
5 ´ 1) « ´774.4 (d)

(
0, 0,´9

8

)

Answers to Exercises 3.1 — Jump to TABLE OF CONTENTS

A-1: r(x, y) = xı̂ıı + ŷ + (ex+1 + xy)k̂

A-2: parabolic bowl

A-3: (a) No (b) Yes (c) Yes (d) Yes (e) No

A-4: (a) No. (b) Yes. (c) No. (d) Yes. (e) Yes.
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A-5: (a) No (b) Yes (c) Yes

A-6: (a) A, F (b) B, E (c) G, J (d) H, L

A-7: (a) (x, y, z) = (2 + 1?
2

cos θ , 2 + 1?
2

cos θ , 4 + sin θ), 0 ď θ ď 2π.

Answers to Exercises 3.2 — Jump to TABLE OF CONTENTS

A-1: Yes. The plane z = 0 is the tangent plane to both surfaces at (0, 0, 0).

A-2: See the solution.

A-3:

(x´ x0 , y´ y0 , z´ z0) = t
(´ fx(x0, y0) , ´ fy(x0, y0) , 1

)
or

x = x0 ´ t fx(x0, y0) y = y0 ´ t fy(x0, y0) z = f (x0, y0) + t

A-4: The normal plane is n ¨ (x´ x0 , y´ y0 , z´ z0) = 0, where the normal vector
n =∇∇∇F(x0, y0, z0)ˆ∇∇∇G(x0, y0, z0).

A-5: Tangent line is

x = x0 + t
[
gy(x0, y0)´ fy(x0, y0)

]

y = y0 + t
[

fx(x0, y0)´ gx(x0, y0)
]

z = z0 + t
[

fx(x0, y0)gy(x0, y0)´ fy(x0, y0)gx(x0, y0)
]

A-6: 2x + y + 9z = 2

A-7: 2x + y + z = 6

A-8: z = ´3
4 x´ 3

2 y + 11
4

A-9: (a) 2ax´ 2ay + z = ´a2 (b) a = 1
2 .

A-10: x + 3y´ 2z = 1

A-11: y = 2x´ 2

A-12: The tangent plane is 8
25 x´ 6

25 y´ z = ´8
5 .

The normal line is (x, y, z) = (´1, 2, 4
5) + t( 8

25 , ´ 6
25 , ´1).

A-13: ˘(1, 0,´2)

A-14:
( 1?

2
, ´1 , ´1

2

)
and

(´ 1?
2

, ´1 , ´1
2

)

A-15: ˘(1
2 ,´1,´1

)

A-16: (a) (1, 0, 3) (b) (3, 3,´1) (c) r(t) = (1, 1, 3) + t(3, 3,´1)

A-17: 49.11˝ (to two decimal places)

A-18: The horizontal tangent planes are z = 0, z = e´1 and z = ´e´1. The largest and
smallest values of z are e´1 and ´e´1, respectively.
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Answers to Exercises 3.3 — Jump to TABLE OF CONTENTS

A-1: ab
a

1 + tan2 θ = ab sec θ

A-2: (a) 1
2

?
a2b2 + a2c2 + b2c2

(b) See the solution.

A-3: πah
2

A-4: 116
15 π

A-5: π
6

[
(1 + 4a2)

3/2 ´ 1
]

A-6: 5
?

2π

A-7: 4
15

[
9
?

3´ 8
?

2 + 1
]

A-8: (a) F(x, y) =
b

1 + fx(x, y)2 + fy(x, y)2 (b) (i)
ş2π

0 dθ
ş1

0 dr 2r?
4´r2

(ii) 32π
3

A-9: 255
?

2π « 1132.9

A-10: a2[π ´ 2]

A-11:
?

2 π

A-12: (2π)2Rr

A-13:
( a

2 , a
2 , a

2

)

A-14: 16a2

A-15: π
2 a3
?

a2 + b2

A-16: (a) 4πa2n+3 (b) 3abc (c) π
3

A-17: (a) 8
3 (b) 16

3

A-18: (a) 1
6 (b) 1

2

A-19: 8
27

[(
13
4

)3/2 ´ 1
]

A-20: 9π

A-21: (a) r(θ, z) = 2
3(3´ z) cos θ ı̂ıı + 2

3(3´ z) sin θ ̂ + z k̂ 0 ď θ ă 2π, 0 ď z ď 3.

(b) 1

A-22:
(
0, 0, a/3

)

A-23: 2π

A-24: ´14
3

A-25:
?

2 π
4
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A-26: 16
3 π

A-27:
(
0, 0, 2/3

)

A-28: 4

A-29: 81
16

A-30: (a) r(Y, θ) = eY sin θ ı̂ıı + Y ̂ + eY cos θ k̂ 0 ď Y ď 1, 0 ď θ ď 2π

z

y

x

x2+z2=ey

(b) 2π
3

[
(1 + e2)3/2 ´ 23/2

]
(c) π

(
1´ e2)

A-31: 12π

A-32:
?

5 π
8

A-33: ´20 π

A-34: 3

A-35: 2π

A-36: 2π

A-37: 192π

A-38: (a) x + y + z = 1 + π/4 (b) 2π
3

[
2
?

2´ 1
]

A-39: (a) Yes. See the solution for the explanation. (b) See the solution for the proof.

A-40: (a) (i) r(u, v) =
(

u , v , 1
3(16´ 2u´ 4v)

)
k̂ u ě 0, v ě 0, u + 2v ď 8

(a) (ii) r(u, v) =
(
4 cos u sin v , 4 sin u sin v , 4 cos v

)
0 ď u ď 2π, 0 ď v ď π

4

(a) (iii) r(u, v) =
(
u , v ,

?
1 + u2 + v2

)
u2 + v2 ď 99

or r(u, v) =
(
u cos v , u sin v ,

?
1 + u2

)
0 ď v ď 2π, 0 ď u ď ?99

(b) 32π
[
1´ 1?

2

]

A-41: (a) π
2 (b) π

4 + 2
3

A-42: ´5
6
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Answers to Exercises 4.1 — Jump to TABLE OF CONTENTS

A-1: (a) A (b) B (c) C (d) A (e) B

A-2: No.

A-3:

A-4: (a)∇∇∇ ¨ F = 3,∇∇∇ˆ F = 0

(b)∇∇∇ ¨ F = y2 ´ z2 + x2,∇∇∇ˆ F = 2yz ı̂ıı´ 2xz ̂´ 2xy k̂

(c)∇∇∇ ¨ F = 1?
x2+y2 ,∇∇∇ˆ F = 0

(d)∇∇∇ ¨ F = 0,∇∇∇ˆ F = k̂?
x2+y2

A-5: (a) 2
r (b)

(
xexy ´ 2x

)
ı̂ıı + y

(
1´ exy) ̂ + z k̂

A-6: (a) k = ´3 (b) k = 2 (c) k = ´2

A-7: (a) 3 (b) 2r (c) ´2a (d) 2
r

A-8: (a) a = ´3 (b) a = 4 (c) a = 12

A-9: (a) F cannot have a vector potential.

(b) Two solutions are A = 1
2(z

2 ´ y2)xı̂ıı´ 1
2 yz2 ̂ and A = 1

2 xz2ı̂ıı + 1
2(x2 ´ z2)ŷ.

A-10: (a) D =
 

(x, y, z)
ˇ

ˇ x2 + z2 ‰ 0
(

(b)∇∇∇ˆ F = 0 on D (c)∇∇∇ ¨ F = 1 on D

(d) F is not conservative on the domain D of part (a).

A-11: (a) α = β = ´1

(b) Any function of the form g(x, y, z) = xyz + w(z) will work.

A-12: (a) See the solution

(b)∇∇∇ˆ (ΩΩΩˆ r) = 2ΩΩΩ ∇∇∇ ¨ (ΩΩΩˆ r) = 0 (c) 1095km/hr

A-13: See the solution.

Answers to Exercises 4.2 — Jump to TABLE OF CONTENTS

A-1: See the solution.

A-2: See the solution.

A-3: (a), (b) 8π
3

A-4: (a), (b) 4
3 πa3

A-5: (a) ´81
4 π (b) 2|V| (c) 2|V|+ 81

4 π

A-6: (a), (b) 2π
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A-7: (a) z (b) 0

A-8: π

A-9: [3 + 3x0 ´ y0]V

A-10: ´π

A-11: 16
3 π

A-12: (a)∇∇∇ ¨ F(x, y, z) = 0 except at (x, y, z) = (0, 0, 0), where F is not defined.

(b) 4π (c) No. (d) 4π (e) 0

A-13: (a) r(θ, ϕ) = sin ϕ cos θ ı̂ıı + 2 sin ϕ sin θ ̂ + 2 cos ϕ k̂ 0 ď θ ă 2π, 0 ď ϕ ď π

(b) 16π (c) 16π, again

A-14: 40π

A-15: 24π

A-16: π
2

A-17: 3
2 π

A-18: 32
3 π

A-19: 3π

A-20: 26
3

A-21: 2π

A-22: (a) 64
3 π (b) 128

3 π

A-23: (a)∇∇∇ ¨ F = 0 if (x, y, z) ‰ 0 and is not defined if (x, y, z) = 0.

(b) 4π (c) 0

(d) The flux integrals
ť

S1
F ¨ n̂ dS and

ť

S2
F ¨ n̂ dS are different, because the one point,

(0, 0, 0), where∇∇∇ ¨ F fails to be well-defined and zero, is contained inside S1 but is not
contained inside S2.

A-24: 72

A-25: (a) 3 (b) ´14π

A-26: ´4 π
5 35/2

A-27: (a) 0 (b) 625
2 π

A-28: 4π

A-29: π

A-30: 12π

A-31: 188
15 π « 39.37

A-32: 5π
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A-33:
[

π
6 ´ 1

3

]
a3

A-34: (a) ´8
?

2π (b) 8
?

2π (c) 16
?

2π

A-35: See the solution.

A-36: See the solution.

A-37: (a), (b) 36π

A-38: e
4

A-39: (a) 1?
3
(´1,´1, 1) (b) ´27π

2 (c) ´81π
2

A-40: (a)∇∇∇ ¨ F = 2 + 2z (b) π 23
6 53 = 4791

6 π

(c) Let S be an oriented surface that encloses a solid V and has outward pointing normal.
If z̄ = ´ 9

2|V| ´ 1, where |V| is the volume of V and z̄ is the z-component of the centroid
(i.e. centre of mass with constant density) of V, then

ť

S F ¨ n̂ dS = ´9. One surface which
obeys this condition is the unit cube (with outward normal) centred on

(
0, 0,´11

2

)
.

A-41: (a)
?

5π
8 (b) 20 (c) 18

A-42: (a) π
4 + π(b+d)

6

(b)
ť

σ1Yσ3
F ¨ n̂ dS is zero if and only if d = ´b.

(c)
ť

σ1Yσ3
F ¨ n̂ dS is zero for all a, b, c, d.

A-43: (a) 4π (b) 0.

A-44: See the solution.

A-45: See the solution.

A-46: 3
4

A-47: 9πa3 + 9πa2

A-48: See the solution.

A-49: (a) 0 (b) 15
2 π

A-50: 30 + 24π

Answers to Exercises 4.3 — Jump to TABLE OF CONTENTS

A-1: See the solution.

A-2: See the solution.

A-3: (a) 1 (b) 1 (c) 0

A-4: See the solution.

A-5: ´54
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A-6: 9

A-7: 32
3 π

A-8: ´6

A-9: (a)

x

y y = x2 + 4x+ 4

y = 4− x2

(−2, 0)

C

C

(b) ´8
3

A-10: ´1
3

A-11: 54

A-12: 10
3

A-13: (a) ´π
2 (b) 3π

2 (c) No.

A-14: 54

A-15: (a) I2 = 0 (b) I3 = π (c) I4 = π

A-16: (a) Qx ´ Py = 0 except at (0, 0) where it is not defined.

(b) ´2π (c) No. (d) 0 (e) ´2π

A-17: (a) π
2 (b) π

4 + 2
3

A-18: 3π
2

A-19: 3π
8

A-20: A = ´2

A-21: ´π

A-22:
ű

C1
F ¨ dr = 0 and

ű

C2
F ¨ dr = 2π

A-23: (a) 1
2 +

1
12

[
53/2 ´ 1

] « 1.3484 (b) 3
4

A-24: (a) The projection of the curve on the xy-plane (i.e. the top view of the curve) is a
circle. See the solution for more details.

(b) (i) 0 (b) (ii) 0

A-25: 6x2 + 3y2 = 1
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Answers to Exercises 4.4 — Jump to TABLE OF CONTENTS

A-1:

(a)

S

n̂

∂S

(b)

Sn̂

∂S

(c)

S

n̂
∂S

A-2: See the solution.

A-3: See the solution.

A-4: (a) 2π (b) 2π

A-5: π

A-6: 8π

A-7: 12π

A-8: π

A-9: 8

A-10: 1

A-11: 4π

A-12: (a) 8 (b) 4
?

3

A-13: (a)

x

y

z

C1

C2
C3

(2,0,0)

(0,2,0)

(0,0,2)

(b) S =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 = 4, x ě 0, y ě 0, z ě 0
(

with

r(θ, ϕ) = 2 cos θ sin ϕ ı̂ıı + 2 sin θ sin ϕ ̂ + 2 cos ϕ k̂, 0 ď θ ď π

2
, 0 ď ϕ ď π

2

and

n̂ = cos θ sin ϕ ı̂ıı + sin θ sin ϕ ̂ + cos ϕ k̂ =
1
2

r(θ, ϕ)

(c) ´4π

A-14: (a) ´128π, (b) ´126π
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A-15: 4π

A-16: (a) 8 (b) 4
?

3

A-17: 5π/4

A-18: ´ 10?
3

A-19: ´2

A-20: ´π

A-21: 3π
4

A-22: π
3

A-23: (a)

(2, 0, 0)

(0, 0, 2)

(0, 3, 0)
Sx

Sy

y

z

x

(b)
ş

C F ¨ dr = 10

A-24: ´π

A-25: 24π

A-26: 2
?

3πR2

A-27: 4
3

A-28: ´2π

A-29: 24π

A-30: (a)∇∇∇ˆ F = (1´ 2xz) ̂ (b) 20/3

A-31: (a) ´18π (b) ´18π

A-32: (a) D =
 

(x, y, z)
ˇ

ˇ x ą 0, y ą 0, z ą 0
(

(b) The domain D is both connected and simply connected.

(c)∇∇∇ˆ F =
(
2x´ 1/x

)
k̂

(d) 2 ln 2´ 24

(e) No. F is not conservative.

A-33: (a) a = 2, b = ´1 (b) π
4
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A-34: ´15

A-35: 12π

A-36: Rewrite
ű

C E ¨ dr as a surface integral. For the details, see the solution.

A-37:
?

2π

A-38: 2π
3
?

3

A-39: (a) One possible parametrization is r(r, θ) = r cos θ ı̂ıı + r sin θ ̂ + r k̂ with 0 ď r ď 1,
0 ď θ ď π.

(b) π

A-40: ´ 4?
3
π

Answers to Exercises 5 — Jump to TABLE OF CONTENTS

A-1: (a) True (b) True (c) True (d) False (e) True

(f) That depends. If κ = 0, the curve is part of a straight line. If κ ą 0 it is part of a circle
of radius 1

κ .

(g) False. (h) False. (i) False.

A-2: (a) False (b) False (c) False (d) False (e) True (f) True

(g) False (h) False (i) False (j) True

A-3: (a) False. (b) N̂(t), B̂(t) (c) True. (d) False. (e) False. (f) True.

A-4: (a) decreasing (b) f (x) is D

(c) r(θ) = cos θ ı̂ıı + sin θ k̂ + sin θ cos θ ̂, 0 ď θ ă 2π

(d) We want parametrisation (d) with domain |u| ě 2, 0 ď v ď 5.

(e) One possible answer is r(t) = t ı̂ıı, 0 ď t ď 1.

(f) C = 6 (g)
 

(a, b, c, d)
ˇ

ˇ a, b, c, d all real and b = c
(

(h) 2

(i) (1) True (2) False (3) False (4) False (5) False

(j) Any vector field whose divergence is 1 everywhere will work. One such vector field is
F = x ı̂ıı.

(k) negative

A-5: (a) false (b) false (c) true (d) false

(e) true, assuming that the second derivatives of the vector field exist and are continuous.

(f) silly, but true (g) true (h) false (i) false (j) false

A-6: (a) False (b) False (c) True (d) True (e) True (f) True (g) True
(h) False
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A-7: (a) Py ă 0 (b) Qx ą 0 (c)∇∇∇ˆ F is in the direction of +k̂ at A

(d)
ş

C1
F ¨ dr ą 0 (e)

ş

C2
F ¨ dr ă 0 (f) F is not conservative

A-8: (a) False (b) True (c) True (d) False (e) True (f) False (g) False
(h) False (i) True (j) True

A-9: (a) True (b) False (c) True (d) False (e) False (f) True (g) True
(h) False (i) False (j) True

A-10: (a) False. (b) False. (c) True. (d) False. (e) True. (f) False.

(g) False. (h) True. (i) False.

A-11: (a) True (b) False (c) True (d) False (e) True (f) True (g) True
(h) False (i) False (j) True

A-12: (b)

A-13: (a) False. (b) False. (c) False. (d) True. (e) False. (f) True. (g)
False. (h) False. (i) True. (j) False.

A-14: (a) True (b) False (c) True, assuming that r(t) is not indentically 0.

(d) False (e) False

A-15:

(a) 2xy + ey sin x + xexz (b) y3 ı̂ıı´ z ̂ (c) (iii) (d) False.

A-16: (a) True (b) True (c) True (d) False (e) True (f) True (g) True

A-17: (a) True (b) False

A-18: (a) True (b) False

A-19: (a), (b), (c) See the solution. (d) Yes (d) No

A-20: (a) yes (b) no (c) no (d) yes

A-21: (a) True (b) True (c) False

A-22: (a), (c) See the solution. (b) 8πb2
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SOLUTIONS TO PROBLEMS

Part IV

146



Solutions to Exercises 1.1 — Jump to TABLE OF CONTENTS

S-1: (a) Since, on the specified part of the circle, x =
a

a2 ´ y2 and y runs from 0 to a, the
parametrization is r(y) =

a

a2 ´ y2 ı̂ıı + y ̂, 0 ď y ď a.

(b) Let θ be the angle between

• the radius vector from the origin to the point (a cos θ, a sin θ) on the circle and
• the positive x-axis.

The tangent line to the circle at (a cos θ, a sin θ) is perpendicular to the radius vector and
so makes angle φ = π

2 + θ with the positive x axis. (See the figure on the left below.) As
θ = φ´ π

2 , the desired parametrization is

(
x(φ), y(φ)

)
=
(
a cos(φ´ π

2 ), a sin(φ´ π
2 )
)
=
(
a sin φ,´a cos φ

)
, π

2 ď φ ď π

x

y

x2 + y2 = a2

θ

φ

(a cos θ, a sin θ)

x

y

x2 + y2 = a2

(
a cos θ , a sin θ

)

θ

(0, a)

s

(c) Let θ be the angle between

• the radius vector from the origin to the point (a cos θ, a sin θ) on the circle and
• the positive x-axis.

The arc from (0, a) to (a cos θ, a sin θ) subtends an angle π
2 ´ θ and so has length

s = a
(

π
2 ´ θ

)
. (See the figure on the right above.) Thus θ = π

2 ´ s
a and the desired

parametrization is

(
x(s), y(s)

)
=
(

a cos
(π

2
´ s

a

)
, a sin

(π

2
´ s

a

))
, 0 ď s ď π

2
a

S-2: We can find the time at which the curve hits a given point by considering the two
equations that arise from the two coordinates. For the y-coordinate to be 0, we must have
(t´ 5)2 = 0, i.e. t = 5. So, the point (´1/

?
2, 0) happens when t = 5.

Similarly, for the y-coordinate to be 25, we need (t´ 5)2 = 25, so (t´ 5) = ˘5. When
t = 0, the curve hits (1, 25); when t = 10, the curve hits (0, 25).

So, in order, the curve passes through the points (1, 25), (´1/
?

2, 0), and (0, 25).
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S-3: The curve “crosses itself” when the same coordinates occur for different values of t,
say t1 and t2. So, we want to know when sin t1 = sin t2 and also t2

1 = t2
2. Since t1 and t2

should be different, the second equation tells us t2 = ´t1. Then the first equation tells us
sin t1 = sin t2 = sin(´t1) = ´ sin t1. That is, sin t1 = ´ sin t1, so sin t1 = 0. That happens
whenever t1 = πn for an integer n.

So, the points at which the curve crosses itself are those points (0, (πn)2) where n is an
integer. It passes such a point at times t = πn and t = ´πn. So, the curve hits this point
2πn time units apart.

S-4: (a) Pretend that the circle is a spool of thread. As the circle rolls, it dispenses the
thread along the ground. When the circle rolls θ radians, it dispenses the arc length θa of
thread and the circle advances a distance θa. So the centre of the circle has moved θa units
to the right from its starting point, x = a. The centre of the circle always has y-coordinate
a. So, after rolling θ radians, the centre of the circle is at position c(θ) = (a + aθ, a).

(b) Now, let’s consider the position of P on the circle, after the circle has rolled θ radians.

P

θ

a sin θ

a
co

sθ

From the diagram, we see that P is a cos θ units above the centre of the circle, and a sin θ
units to the right of it. So, the position of P is (a + aθ + a sin θ, a + a cos θ).

Remark: this type of curve is known as a cycloid.

S-5: We aren’t concerned with x, so we can eliminate it by solving for it in one equation,
and plugging that into the other. Since C lies on the plane, x = ´y´ z, so:

1 = x2 ´ 1
4

y2 + 3z2 = (´y´ z)2 ´ 1
4

y2 + 3z2

=
3
4

y2 + 4z2 + 2yz
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Completing the square,

1 =
1
2

y2 +
(

2z +
y
2

)2

1´ y2

2
=
(

2z +
y
2

)2

Since y is small, the left hand is close to 1 and the right hand side is close to (2z)2. So

(2z2) « 1. Since z is negative, z « ´1
2 and 2z + y

2 ă 0. Also, 1´ y2

2 is positive, so it has a
real square root.

´
c

1´ y2

2
= 2z +

y
2

´1
2

c

1´ y2

2
´ y

4
= z

S-6: To determine whether the particle is rising or falling, we only need to consider its
z-coordinate: z(t) = (t´ 1)2(t´ 3)2. Its derivative with respect to time is
z1(t) = 4(t´ 1)(t´ 2)(t´ 3). This is positive when 1 ă t ă 2 and when 3 ă t, so the
particle is increasing on (1, 2)Y (3,8) and decreasing on (0, 1)Y (2, 3).

If r(t) is the position of the particle at time t, then its speed is |r1(t)|. We differentiate:

r1(t) = ´e´t ı̂ıı´ 1
t2 ̂ + 4(t´ 1)(t´ 2)(t´ 3)k̂

So, r(1) = ´1
e ı̂ıı´ 1 ̂ and r(3) = ´ 1

e3 ı̂ıı´ 1
9 ̂. The absolute value of every component of r(1)

is greater than or equal to that of the corresponding component of r(3), so |r(1)| ą |r(3)|.
That is, the particle is moving more swiftly at t = 1 than at t = 3.

Note: We could also compute the sizes of both vectors directly: |r1(1)| =
c(

1
e

)2
+ (´1)2,

and |r1(3)| =
c(

1
e3

)2
+
(
´1

9

)2
.

S-7:

r(t + h)

r(t)

r(0)
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The red vector is r(t + h)´ r(t). The arclength of the segment indicated by the blue line
is the (scalar) s(t + h)´ s(t).

Remark: as h approaches 0, the curve (if it’s differentiable at t) starts to resemble a
straight line, with the length of the vector r(t + h)´ r(t) approaching the scalar
s(t + h)´ s(t). This step is crucial to understanding Lemma 1.1.3 in the CLP-4 text.

S-8: Velocity is a vector-valued quantity, so it has both a magnitude and a direction.
Speed is a scalar — the magnitude of the velocity. It does not include a direction.

S-9: By the product rule

d
dt
[
(rˆ r1) ¨ r2] = (r1 ˆ r1) ¨ r2 + (rˆ r2) ¨ r2 + (rˆ r1) ¨ r3

The first term vanishes because r1 ˆ r1 = 0. The second term vanishes because rˆ r2 is
perpendicular to r2. So

d
dt
[
(rˆ r1) ¨ r2] = (rˆ r1) ¨ r3

which is (c).

S-10: we are told that r(t) K r1(t), so that r(t) ¨ r1(t) = 0, for all t. Consequently

d
dt
|r(t)|2 =

d
dt
[
r(t) ¨ r(t)] = 2r(t) ¨ r1(t) = 0

So |r(t)|2 is a constant, say A, independent of time and r(t) always lies on the sphere of
radius

?
A centred on the origin.

S-11: We have
v(t) = r1(t) = 5

?
2 ı̂ıı + 5e5t ̂ + 5e´5t k̂

and hence

|v(t)| = |r1(t)| = 5
ˇ

ˇ

?
2 ı̂ıı + e5t ̂ + e´5t k̂

ˇ

ˇ = 5
a

2 + e10t + e´10t

Since 2 + e10t + e´10t =
(
e5t + e´5t)2, that’s (d).

S-12: We are told that
r(t) = a cos t ı̂ıı + a sin t ̂ + ct k̂

So, by definition,

velocity = v(t) = r1(t) = ´a sin t ı̂ıı + a cos t ̂ + c k̂

speed =
ds
dt

(t) = |r1(t)| =
a

a2 + c2

acceleration = a(t) = r2(t) = ´a cos t ı̂ıı´ a sin t ̂

As t runs over an interval of length 2π, (x, y) traces out a circle of radius a and z
increases by 2πc. The path is a helix with radius a and with each turn having height 2πc.
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S-13: (a) Since r1(t) = (2t, 0, t2), the specified unit tangent at t = 1 is

T̂(1) =
(2, 0, 1)?

5

(b) We are to find the arc length between r(0) and r(´1). As ds
dt =

?
4t2 + t4, the

arc length =

ż 0

´1

a

4t2 + t4 dt

The integrand is even, so

arc length =

ż 1

0

a

4t2 + t4 dt =
ż 1

0
t
a

4 + t2 dt =
[

1
3(4 + t2)

3/2
]1

0
= 1

3

[
53/2 ´ 8

]

S-14: By Lemma 1.1.3 in the CLP-4 text, the arclength of r(t) from t = 0 to t = 1 is
ş1

0

ˇ

ˇ

ˇ

dr
dt (t)

ˇ

ˇ

ˇ
dt. We’ll calculate this in a few pieces to make the steps clearer.

r(t) =

(
t,

c

3
2

t2, t3

)

dr
dt

(t) =
(

1,
?

6t, 3t2
)

ˇ

ˇ

ˇ

ˇ

dr
dt

(t)
ˇ

ˇ

ˇ

ˇ

=
b

12 + (
?

6t)2 + (3t2)2 =
a

1 + 6t2 + 9t4 =
b

(3t2 + 1)2 = 3t2 + 1
ż 1

0

ˇ

ˇ

ˇ

ˇ

dr
dt

(t)
ˇ

ˇ

ˇ

ˇ

dt =
ż 1

0

(
3t2 + 1

)
dt = 2

S-15: Since

x1(t) = a
[

cos2 t´ sin2 t
]
= a cos 2t

y1(t) = 2a sin t cos t = a sin 2t
z1(t) = b

we have
ds
dt

(t) =
b

x1(t)2 + y1(t)2 + z1(t)2 =
a

a2 + b2

As the speed ds
dt (t) is constant, the length is just ds

dt T =
?

a2 + b2 T.

S-16: Since r(t) is the position of the particle, its acceleration is r2(t).

r(t) = (t + sin t, cos t)
r1(t) = (1 + cos t,´ sin t)
r2(t) = (´ sin t,´ cos t)

|r2(t)| =
a

sin2 t + cos2 t = 1
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The magnitude of acceleration is constant, but its direction is changing, since r2(t) is a
vector with changing direction.

S-17: (a) The speed is

ds
dt

(t) =
ˇ

ˇr1(t)
ˇ

ˇ =
ˇ

ˇ

ˇ

(
2 cos t´ 2t sin t , 2 sin t + 2t cos t , t2

)ˇ
ˇ

ˇ

=

b(
2 cos t´ 2t sin t

)2
+
(
2 sin t + 2t cos t

)2
+ t4

=
a

4 + 4t2 + t4

= 2 + t2

so the length of the curve is

length =

ż 2

0

ds
dt

dt =
ż 2

0
(2 + t2)dt =

[
2t +

t3

3

]2

0
=

20
3

(b) A tangent vector to the curve at r(π) =
(´ 2π , 0 , π3/3

)
is

r1(π) =
(

2 cos π ´ 2π sin π , 2 sin π + 2π cos π , π2
)
= (´2 , ´2π , π2)

So parametric equations for the tangent line at r(π) are

x(t) = ´2π ´ 2t
y(t) = ´2πt

z(t) = π3/3 + π2t

S-18: (a) As r(t) =
(
3 cos t, 3 sin t, 4t

)
, the velocity of the particle is

r1(t) =
(´ 3 sin t, 3 cos t, 4

)

(b) As ds
dt , the rate of change of arc length per unit time, is

ds
dt

(t) = |r1(t)| = ˇ

ˇ

(´ 3 sin t, 3 cos t, 4
)ˇ
ˇ = 5

the arclength of its path between t = 1 and t = 2 is

ż 2

1
dt

ds
dt

(t) =
ż 2

1
dt 5 = 5
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S-19: (a) We can parametrize the circle x2 + y2 = 9 as x(θ) = 3 cos θ, y(θ) = 3 sin θ with θ
running from 0 to 2π. As z = 2x + 3y, the ellipse can be parametrized by

x(θ) = 3 cos θ, y(θ) = 3 sin θ, z(θ) = 2x(θ) + 3y(θ) = 6 cos θ + 9 sin θ, 0 ď θ ď 2π

(b) As

ds
dθ

=
b

x1(θ)2 + y1(θ)2 + z1(θ)2

=
a

9 sin2 θ + 9 cos2 θ + 36 sin2 θ + 81 cos2 θ ´ 108 sin θ cos θ

=
a

45 + 45 cos2 θ ´ 108 sin θ cos θ

the circumference is

s =
ż 2π

0

a

45 + 45 cos2 θ ´ 108 sin θ cos θ dθ

S-20: (a) As

r1(t) = ´ sin t cos2 t ı̂ıı + sin2 t cos t ı̂ıı + 3 sin2 t cos t k̂ = sin t cos t
(´ cos t ı̂ıı + sin t ̂ + 3 sin t k̂

)

ds
dt

(t) = | sin t cos t|
a

cos2 t + sin2 t + 9 sin2 t = | sin t cos t|
a

1 + 9 sin2 t

the arclength from t = 0 to t = π
2 is

ż π/2

0

ds
dt

(t)dt =
ż π/2

0
sin t cos t

a

1 + 9 sin2 t dt

=
1

18

ż 10

1

?
u du with u = 1 + 9 sin2 t, du = 18 sin t cos t dt

=
1

18

[2
3

u3/2
]10

1

=
1

27
(
10
?

10´ 1
)

(b) The arclength from t = 0 to t = π is
ż π

0

ds
dt

(t)dt =
ż π

0
| sin t cos t|

a

1 + 9 sin2 t dt Don’t forget the absolute value signs!

= 2
ż π/2

0
| sin t cos t|

a

1 + 9 sin2 t dt = 2
ż π/2

0
sin t cos t

a

1 + 9 sin2 t dt

since the integrand is invariant under t Ñ π ´ t. So the arc length from t = 0 to t = π is
just twice the arc length from part (a), namely 2

27

(
10
?

10´ 1
)
.
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S-21: Since

r(t) =
t3

3
ı̂ıı +

t2

2
̂ +

t
2

k̂

r1(t) = t2 ı̂ıı + t ̂ +
1
2

k̂

ds
dt

(t) = |r1(t)| =
c

t4 + t2 +
1
4
=

c(
t2 +

1
2

)2
= t2 +

1
2

the length of the curve is

s(t) =
ż t

0

ds
dt

(u)du =

ż t

0

(
u2 +

1
2

)
du =

t3

3
+

t
2

S-22: Since

r(t) = tm ı̂ıı + tm ̂ + t3m/2 k̂

r1(t) = mtm´1 ı̂ıı + mtm´1 ̂ +
3m
2

t3m/2´1 k̂

ds
dt

= |r1(t)| =
c

2m2t2m´2 +
9m2

4
t3m´2 = mtm´1

c

2 +
9
4

tm

the arc length is
ż b

a

ds
dt

(t)dt =
ż b

a
mtm´1

c

2 +
9
4

tm dt

=
4
9

ż 2+ 9
4 bm

2+ 9
4 am

?
u du with u = 2 +

9
4

tm, du =
9m
4

tm´1

=
4
9

[2
3

u3/2
]2+ 9

4 bm

2+ 9
4 am

=
8

27

[(
2 +

9
4

bm
)3/2

´
(

2 +
9
4

am
)3/2]

S-23: (a) Since y =
?

x and z = 2
3 xy = 2

3 x3/2,

r(x) = x ı̂ıı +
?

x ̂ +
2
3

x3/2 k̂

For the remaining parts of this problem we will also need

r1(x) = ı̂ıı +
1

2
?

x
̂ +

?
x k̂

r2(x) = ´ 1
4x3/2 ̂ +

1
2
?

x
k̂

ds
dx

= |r1(x)| =
c

1 +
1

4x
+ x =

d(
1

2
?

x
+
?

x
)2

=
1

2
?

x
+
?

x

ds
dx

(1) =
3
2
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(b)

ż

C
ds =

ż 9

0

ds
dx

dx =

ż 9

0

(
1

2
?

x
+
?

x
)

dx =

[?
x +

2
3

x3/2
]9

0
= 3 + 18 = 21

(c) Denote by

• r(x) the position of the particle when its first coordinate is x,
• R(t) the position of the particle at time t,
• x(t) the x–coordinate of the particle at time t, and
• s(x) the arc length of the curve from the origin to r(x).

We are told that |R1(t)| = 9 for all t. So

R(t) = r
(
x(t)

) ùñ R1(t) = r1
(
x(t)

)dx
dt

(t)

ùñ 9 = |R1(t)| = ds
dx
(
x(t)

)dx
dt

(t) =

(
1

2
a

x(t)
+
b

x(t)

)
dx
dt

(t)

In particular, if the particle is at (1, 1, 2
3) at time 0, then x(0) = 1 and

9 =

(
1

2
?

1
+
?

1
)

dx
dt

(0) ùñ dx
dt

(0) = 6

so that

R1(0) = r1(1)
dx
dt

(0) =
(

ı̂ıı +
1
2

̂ + k̂
)

6 = 6 ı̂ıı + 3 ̂ + 6 k̂

(d) By the product and chain rules,

R1(t) = r1
(
x(t)

)dx
dt

(t) ùñ R2(t) = r2
(
x(t)

) (dx
dt

(t)
)2

+ r1
(
x(t)

)d2x
dt2 (t)

We saw in part (c) that 9 = |R1(t)| =
(

1
2
?

x(t)
+
a

x(t)
)

dx
dt (t) so that

dx
dt

(t) = 9

(
1

2
a

x(t)
+
b

x(t)

)´1

Differentiating that gives

d2x
dt2 (t) = ´9

(
1

2
a

x(t)
+
b

x(t)

)´2(
´ 1

4x(t)3/2 +
1

2
a

x(t)

)
dx
dt

(t)

In particular, when t = 0, x(0) = 1 and dx
dt (0) = 6

d2x
dt2 (0) = ´9

(
3
2

)´2(1
4

)
6 = ´6
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so

R2(0) = r2(1)
(
6
)2

+ r1(1)
(´ 6

)
= 36

(
´1

4
̂ +

1
2

k̂
)
´ 6

(
ı̂ıı +

1
2

̂ + k̂
)

= ´6 ı̂ıı´ 12 ̂ + 12 k̂

S-24: Given the position of the particle, we can find its velocity:

v(t) = r1(t) = (cos t,´ sin t, 1)

Applying the given formula,

L(t) = rˆ v = (sin t, cos t, t)ˆ (cos t,´ sin t, 1).

Solution 1: We can first compute the cross product, then differentiate:

L(t) = (cos t + t sin t)ı̂ıı + (t cos t´ sin t)̂´ k̂
L1(t) = t cos t ı̂ıı´ t sin t ̂

|L1(t)| =
b

t2(sin2 t + cos2 t) =
?

t2 = |t|

Solution 2: Using the product rule:

L1(t) = r1(t)ˆ v(t) + r(t)ˆ v1(t)
= r1(t)ˆ r1(t)

looooomooooon

0

+r(t)ˆ v1(t)

= (sin t, cos t, t)ˆ (´ sin t,´ cos t, 0)
= t cos t ı̂ıı´ t sin t ̂

|L1(t)| =
a

t2 cos2 t + t2 sin t2 = |t|

S-25: (a) Since z = 6u, y = z2

12 = 3u2 and x = yz
18 = u3,

r(u) = u3 ı̂ıı + 3u2 ̂ + 6u k̂

(b)

r1(u) = 3u2 ı̂ıı + 6u ̂ + 6 k̂
r2(u) = 6u ı̂ıı + 6 ̂

ds
du

(u) = |r1(u)| =
a

9u4 + 36u2 + 36 = 3
(
u2 + 2

)

ż

C
ds =

ż 1

0

ds
du

du =

ż 1

0
3
(
u2 + 2

)
du =

[
u3 + 6u

]1
0 = 7
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(c) Denote by R(t) the position of the particle at time t. Then

R(t) = r
(
u(t)

) ùñ R1(t) = r1
(
u(t)

)du
dt

In particular, if the particle is at (1, 3, 6) at time t1, then u(t1) = 1 and

6 ı̂ıı + 12 ̂ + 12 k̂ = R1(t1) = r1(1)
du
dt

(t1) =
(
3 ı̂ıı + 6 ̂ + 6 k̂

)du
dt

(t1)

which implies that du
dt (t1) = 2.

(d) By the product and chain rules,

R1(t) = r1
(
u(t)

)du
dt

ùñ R2(t) = r2
(
u(t)

)(du
dt

)2
+ r1

(
u(t)

)d2u
dt2

In particular,

27 ı̂ıı + 30 ̂ + 6 k̂ = R2(t1) = r2(1)
(du

dt
(t1)

)2
+ r1

(
1
)d2u

dt2 (t1)

=
(
6 ı̂ıı + 6 ̂

)
22 +

(
3 ı̂ıı + 6 ̂ + 6 k̂

)d2u
dt2 (t1)

Simplifying

3 ı̂ıı + 6 ̂ + 6 k̂ =
(
3 ı̂ıı + 6 ̂ + 6 k̂

)d2u
dt2 (t1) ùñ d2u

dt2 (t1) = 1

S-26: (a) According to Newton,

mr2(t) = F(t) so that r2(t) = ´3t ı̂ıı + sin t ̂ + 2e2t k̂

Integrating once gives

r1(t) = ´3
t2

2
ı̂ıı´ cos t ̂ + e2t k̂ + c

for some constant vector c. We are told that r1(0) = v0 = π2

2 ı̂ıı. This forces c = π2

2 ı̂ıı + ̂´ k̂
so that

r1(t) =
(

π2

2
´ 3t2

2

)
ı̂ıı + (1´ cos t) ̂ +

(
e2t ´ 1

)
k̂

Integrating a second time gives

r(t) =
(

π2t
2
´ t3

2

)
ı̂ıı + (t´ sin t) ̂ +

(
1
2

e2t ´ t
)

k̂ + c

157



for some (other) constant vector c. We are told that r(0) = r0 = 1
2 k̂. This forces c = 0 so

that

r(t) =
(

π2t
2
´ t3

2

)
ı̂ıı + (t´ sin t) ̂ +

(
1
2

e2t ´ t
)

k̂

(b) The particle is in the plane x = 0 when

0 =

(
π2t
2
´ t3

2

)
=

t
2
(π2 ´ t2) ðñ t = 0,˘π

So the desired time is t = π.

(c) At time t = π, the velocity is

r1(π) =

(
π2

2
´ 3π2

2

)
ı̂ıı + (1´ cos π) ̂ +

(
e2π ´ 1

)
k̂

= ´π2 ı̂ıı + 2 ̂ +
(
e2π ´ 1

)
k̂

S-27: (a) Parametrize C by x. Since y = x2 and z = 2
3 x3,

r(x) = x ı̂ıı + x2 ̂ +
2
3

x3 k̂

r1(x) = ı̂ıı + 2x ̂ + 2x2 k̂

r2(x) = 2 ̂ + 4x k̂
ds
dx

= |r1(x)| =
a

1 + 4x2 + 4x4 = 1 + 2x2

and
ż

C
ds =

ż 3

0

ds
dx

dx =

ż 3

0

(
1 + 2x2) dx =

[
x +

2
3

x3
]3

0
= 21

(b) The particle travelled a distance of 21 units in 7
2 time units. This corresponds to a

speed of 21
7/2 = 6.

(c) Denote by R(t) the position of the particle at time t. Then

R(t) = r
(
x(t)

) ùñ R1(t) = r1
(
x(t)

)dx
dt

By parts (a) and (b) and the chain rule

6 =
ds
dt

=
ds
dx

dx
dt

= (1 + 2x2)
dx
dt

ùñ dx
dt

=
6

1 + 2x2

In particular, the particle is at
(
1, 1, 2

3

)
at x = 1. At this time dx

dt = 6
1+2ˆ1 = 2 and

R1 = r1
(
1
)dx

dt
=
(
ı̂ıı + 2 ̂ + 2 k̂

)
2 = 2ı̂ıı + 4 ̂ + 4 k̂
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(d) By the product and chain rules,

R1(t) = r1
(
x(t)

)dx
dt

ùñ R2(t) = r2
(
x(t)

)(dx
dt

)2
+ r1

(
x(t)

)d2x
dt2

Applying d
dt to 6 =

(
1 + 2x(t)2)dx

dt (t) gives

0 = 4x
(dx

dt

)2
+ (1 + 2x2)

d2x
dt2

In particular, when x = 1 and dx
dt = 2, 0 = 4ˆ 1

(
2
)2

+ (3)d2x
dt2 gives d2x

dt2 = ´16
3 and

R2 =
(
2 ̂ + 4 k̂

)(
2
)2 ´ (ı̂ıı + 2 ̂ + 2 k̂

)16
3

= ´8
3
(
2ı̂ıı + ̂´ 2 k̂

)

S-28: The question is already set up as an xy-plane, with the camera at the origin, so the
vector in the direction the camera is pointing is (x(t), y(t)). Let θ be the angle the camera
makes with the positive x-axis (due east). The camera, the object, and the due-east
direction (positive x-axis) make a right triangle.

x

y

object

θ

x(t)

y(t)

camera

tan θ =
y
x

Differentiating implicitly with respect to t:

sec2 θ
dθ

dt
=

xy1 ´ yx1

x2

dθ

dt
= cos2 θ

(
xy1 ´ yx1

x2

)
=

(
x

a

x2 + y2

)2(
xy1 ´ yx1

x2

)
=

xy1 ´ yx1

x2 + y2

S-29: Using the Theorem of Pappus, we can calculate the surface area and volume of a
pipe with the same length and radius as this pipe. So, we need to find the length of the
pipe, L.

dr
dt

= (
?

2t, t, 1)
ˇ

ˇ

ˇ

ˇ

dr
dt

ˇ

ˇ

ˇ

ˇ

=
a

2t + t2 + 1 = |t + 1|

L =

ż 10

0
(t + 1)dt = 60
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A pipe with radius 3 and length 60 has surface area 60(2π ¨ 3) = 360π and volume
60(π ¨ 32) = 540π.

S-30: In general a helix can be parametrized by

r(θ) = a cos θ ı̂ıı + a sin θ ̂ + bθ k̂

Our first task is to determine a and b. The radius of the helix is 3 cm, so a = 3 cm. After
10 turns (i.e. θ = 20π) the height, bθ, is 1 cm. So b(20π) = 1 and b = 1

20π cm/rad. Thus
r(θ) = 3 cos θ ı̂ıı + 3 sin θ ̂ + 1

20π θk̂.

With each full turn of the helix (i.e. each increase of θ by 2π) the height of the helix
increases by 2πb = 1

10cm. So if we can determine the length of wire in one full turn of the
helix, we can easily determine how many turns the helix goes through in total, and from
that we can determine the total height of the helix.

As r1(θ) = ´3 sin θ ı̂ıı + 3 cos θ ̂ + 1
20π k̂ we have ds

dθ =
ˇ

ˇr1(θ)
ˇ

ˇ =
b

9 + 1
400π2 . So the length

of one full turn of the helix is
ż 2π

0

c

9 +
1

400π2 dθ = 2π

c

9 +
1

400π2

and 1000cm of wire generates

1000

2π
b

9 + 1
400π2

=
500

π
b

9 + 1
400π2

turns. Each turn adds 1
10cm to the height, so the total height is

500

π
b

9 + 1
400π2

¨ 1
10

=
50

π
b

9 + 1
400π2

« 5.3 cm

Remark. We can check that this answer is reasonable by taking advantage of the fact that
each coil adds only a very small height (relative to the radius). So we expect the length of
one coil to be about the same as the circumference of a circle of the same radius, namely
6π. If we were making actual circles of the wire, there would be 1000

6π of them. Stacking
up at 10 per centimetre, this would make a pile of height 1000

6π¨10cm. Since this number is
also approximately 5.3cm, we feel our result is reasonable.

S-31: Define u(t) = eαt dr
dt (t). Then

du
dt

(t) = αeαt dr
dt

(t) + eαt d2r
dt2 (t)

= αeαt dr
dt

(t)´ geαtk̂´ αeαt dr
dt

(t)

= ´geαtk̂
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Integrating both sides of this equation from t = 0 to t = T gives

u(T)´ u(0) = ´g
eαT ´ 1

α
k̂

so that

u(T) = u(0)´ g
eαT ´ 1

α
k̂ =

dr
dt

(0)´ g
eαT ´ 1

α
k̂ = v0 ´ g

eαT ´ 1
α

k̂

Substituting in u(T) = eαt dr
dt (T) and multiplying through by e´αT gives

dr
dt

(T) = e´αTv0 ´ g
1´ e´αT

α
k̂

Integrating both sides of this equation from T = 0 to T = t gives

r(t)´ r(0) =
e´αt ´ 1
´α

v0 ´ g
t
α

k̂ + g
e´αt ´ 1
´α2 k̂

so that

r(t) = r0 ´ e´αt ´ 1
α

v0 + g
1´ αt´ e´αt

α2 k̂

Solutions to Exercises 1.2 — Jump to TABLE OF CONTENTS

S-1: You’re asked to find the arclength of the curve from s = 1 to s = t. However,
arclength is given by s. So you’re asked the length of the curve from the point where its
arclength is one, to the point where its arclength is t. That is, t´ 1.

S-2: The arclength from P to P will be 0, so P is the point where s = 0. That is, r(0), or(
sin(1/2), cos(1/2),

?
3/2

)
.

S-3:

Solution 1: We consider the situation geometrically. If we plot R in space (of the relevant
dimension), regardless of its parametrization, the derivative at a point will give a
vector tangent to R, in the direction the curve moves when the parameter is
increasing. Since a(t0) and b(s0) describe the same spot on the curve, a1(t0) and
b1(s0) will be parallel1 — they’re both tangent to the same piece of curve.
Furthermore, as t increases, so does s, so the direction of increasing t is the same as
the direction of increasing s. Therefore, A. holds.

1 Since we specified the derivatives are nonzero, there’s no messiness about vectors being parallel to a
zero vector.
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R

a(t0) = b(s0)

tangent direction

Now we consider the magnitudes of the vectors, to rule out E. Recall |a1(t)| is the
speed at which the curve changes relative to t; this could be any (nonnegative)
number. By the same token, |b1(s)| = 1. So, b1(s0) is a unit vector, while a1(t0) may
or may not be. Then the two vectors are not necessarily equal (although they could
be).

So, the best answer is A.

Solution 2: The chain rule gives us a relationship between b1(s) and a1(t).

db
ds

=
d
ds

[a(t(s))] =
da
dt

dt
ds

So, the vectors db
ds and da

dt differ only by the scalar function dt
ds . So, at any point

along the curve, these vectors are parallel.

Furthermore, we know that t and s are positively correlated: as t increases, so does
s, because we’re covering more arclength. So, dt

ds is nonnegative. Furthermore, since
the derivatives are nonzero, dt

ds is nonzero. So, b1(s0) and a1(t0) are positive scalar
multiples of each other. That is, they are parallel, and pointing in the same
direction. However, unless dt

ds = 1 (that is, t(s) = s + C for some constant C), the
vectors do not have the same magnitude, and hence are not equal.

So, A is the best solution.

S-4: (a) The velocity vector is

r1(t) = (6 sin2(t) cos t , ´6 sin t cos2(t) , 3 cos2 t´ 3 sin2 t)

= 3
(

sin t sin(2t) , ´ cos t sin(2t) , cos(2t)
)

In particular, since sin(π/3) = sin(2π/3) =
?

3
2 and cos(π/3) = ´ cos(2π/3) = 1

2 ,

r1(π/3) = 3
(

3/4 , ´?3/4 , ´1/2
)

and the specified unit tangent vector is

T̂ =

(
3/4 , ´?3/4 , ´1/2

)
ˇ

ˇ

(
3/4 , ´?3/4 , ´1/2

)ˇ
ˇ

=
(

3/4 , ´?3/4 , ´1/2
)
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(b) The speed is

ds
dt

= |r1(t)| = 3
b

sin2 t sin2(2t) + cos2 t sin2(2t) + cos2(2t)

= 3
b

sin2(2t) + cos2(2t)

= 3

So s = 3t and the reparametrized form is

R(s) =
(
2 sin3(s/3), 2 cos3(s/3), 3 sin(s/3) cos(s/3)

)

S-5: (a) We have |r(t)| = et ď 1 for t ď 0. So the part of the spiral contained in the unit
circle is the part of the spiral with ´8 ă t ď 0. As

r1(t) = et(cos t, sin t) + et(´ sin t, cos t) = et( cos t´ sin t , sin t + cos t
)

the speed

ds
dt

=
ˇ

ˇr1(t)
ˇ

ˇ = et
b

(cos t´ sin t)2 + (sin t + cos t)2 =
?

2et

and the arclength from t = ´8 to r(t) is

s(t) =
ż t

´8

ds
dt

(t̃) dt̃ =
ż t

´8

?
2et̃ dt̃ =

?
2et

In particular the length of the part of the spiral contained in the unit circle is s(0) =
?

2.

(b) The inverse function of s(t) =
?

2et is t(s) = ln
(

s?
2

)
. So the reparametrization is

R(s) = et(cos t, sin t)
ˇ

ˇ

ˇ

t=ln
(

s?
2

) =
s?
2

(
cos

(
ln
( s?

2

))
, sin

(
ln
( s?

2

)))

S-6: Using arctan t = z, and so t = tan z:

r(t) =
(

1?
1 + t2

,
arctan t?
1 + t´2

, arctan t
)

=

(
1

a

1 + tan2 z
,

z
a

1 + cot2 z
, z

)

=

(
1

| sec z| ,
z

| csc z| , z
)

= (| cos z|, z| sin z|, z)

Since 0 ď t, and arctan t ă π/2 we have 0 ď z ă π/2, so cos z and sin z are both
nonnegative.

= (cos z, z sin z, z)
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If we didn’t have the restricted domain, this would make a spiral going up: z is both the
height of the spiral and a radian measure. The ı̂ıı-component of the spiral stays between
´1 and 1, while the ̂-component increases. So, our spiral gets increasingly “wide,” while
staying the same “thickness.”

Due to the restricted domain, our actual curve is only one-quarter of a “turn” of this
spiral, indicated in red above.

The parameter z is a measure of height, and it is also a radian measure as the spiral turns.

S-7:

r(t) = (1
2 t2, 1

3 t3)

r1(t) = (t, t2)

|r1(t)| =
a

t2 + t4 = |t|
a

1 + t2

s(t) =
ż t

´1
|x|

a

1 + x2dx =

#

şt
´1´x

?
1 + x2dx when t ď 0

ş0
´1´x

?
1 + x2dx +

şt
0 x
?

1 + x2dx when t ą 0

Let u = 1 + x2, 1
2du = xdx

=

#

´ ş1+t2

2
1
2
?

udu when t ď 0

´ ş1
2

1
2
?

udu +
ş1+t2

1
1
2
?

udu when t ą 0

=

#

´1
3 u3/2|1+t2

2 when t ď 0
´1

3 u3/2|12 + 1
3 u3/2|1+t2

1 when t ą 0

=

#

23/2

3 ´ 1
3(1 + t2)3/2 when t ď 0

´2
3 +

23/2

3 + 1
3(1 + t2)3/2 when t ą 0
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Solving for t in terms of s:

1 + t2 =

#

(2
?

2´ 3s)2/3 when t ď 0
(3s + 2´ 2

?
2)2/3 when t ą 0

t2 =

#

(2
?

2´ 3s)2/3 ´ 1 when t ď 0
(3s + 2´ 2

?
2)2/3 ´ 1 when t ą 0

Remembering that
?

t2 = |t|:

t =

$

&

%

´
b

(2
?

2´ 3s)2/3 ´ 1 when t ď 0
b

(3s + 2´ 2
?

2)2/3 ´ 1 when t ą 0

Noting that t = 0 when s = 1
3(2
?

2´ 1), we find our reparametrization of (1
2 t2, 1

3 t3).

R(s) =

$

&

%

(
1
2

[
(2
?

2´ 3s)2/3 ´ 1)
]

,´1
3

[
(2
?

2´ 3s)2/3 ´ 1
]3/2

)
when s ď 1

3(2
?

2´ 1)(
1
2

[
(3s + 2´ 2

?
2)2/3 ´ 1

]
, 1

3

[
(3s + 2´ 2

?
2)2/3 ´ 1

]3/2
)

when s ą 1
3(2
?

2´ 1)

Remark: after a computation with this much detail, it’s nice to find a few points to check,
to verify that our answer is reasonable. For instance, when s = 0, t should be ´1, and
vice-versa. Also, we found that t = 0 corresponds to s = 1

3(2
?

2´ 1). So, we should be

able to verify that r(0) = R
(

1
3(2
?

2´ 1)
)

and r(´1) = R(0).

Solutions to Exercises 1.3 — Jump to TABLE OF CONTENTS

S-1: The curve is a circle of radius 3, centred at the origin. So, the “circle of best fit” is just
the curve itself. T̂ is the unit vector tangent to the circle in direction of increasing t, and N̂
is the unit vector pointing towards the origin.

x

y

1

T̂

N̂

The radius of the (osculating) circle is 3, so ρ = 3 and κ = 1
ρ = 1

3 .

S-2: The arclength of r(t) traced out by an interval of t of length θ is 3θ. That is, s = 3t.
Our reparametrization of the circle in terms of arclength is
R(s) = (3 sin(s/3), 3 cos(s/3)).

165



We can calculate the vectors tangent to the circle, then normalize them (i.e. make them
length one) to find T̂.

v(t) = r1(t) = (3 cos t,´3 sin t) T̂(s) = R1(s) = (cos(s/3),´ sin(s/3))

T̂(t) =
r1(t)
|r1(t)| =

(3 cos t,´3 sin t)
3

= (cos t,´ sin t)

Note R1(s), because it’s parametrized in terms of arclength, has derivative vectors of
length one. So, we don’t need to normalize them (although if we did, it wouldn’t change
anything).

Note also that we can check out answers using Question 1. In that question, we found T̂
was ı̂ıı when t = s = 0; this fits with the vectors we just found.

As in Question 1, κ = 1
3 . So, using Theorem 1.3.3 Part (b):

dT̂
ds

(s) = κ(s) N̂(s)
(
´1

3
sin(s/3) , ´ 1

3
cos(s/3)

)
=

1
3

N̂(s)

(´ sin(s/3) , ´ cos(s/3)) = N̂(s)

Remember s = 3t. Using Theorem 1.3.3 Part (c):

dT̂
dt

= κ
ds
dt

N̂(t)

(´ sin t,´ cos t) =
1
3
(3)N̂(t)

(´ sin t,´ cos t) = N̂(t)

S-3: As t increases, the arms of the spiral “flatten out,” looking like a circle of bigger and
bigger radius. So, we would expect the curvature to decrease: lim

tÑ8
κ(t) = 0.

S-4: ds
dt = |v(t)| = |r1(t)| = ˇ

ˇ(et, 3, cos t)
ˇ

ˇ =
?

e2t + 9 + cos2 t
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S-5:

T̂(t) =
v(t)
|v(t)| =

r1(t)
|r1(t)|

We use the chain rule to differentiate r(t).

=

(
et(cos t´ sin t) , et(cos t + sin t)

)
a

e2t(cos t´ sin t)2 + e2t(cos t + sin t)2

=
1?
2

(
cos t´ sin t , cos t + sin t

)

dT̂
dt

=
1?
2

(´ sin t´ cos t , ´ sin t + cos t
)

Since R(s) is parametrized with respect to arclength, |R1(s)| = 1.

T̂(s) = R1(s)

Making ample use of the chain rule, and setting U(s) =
(
ln
(
s/
?

2
))

, we have U1(s) = 1
s :

T̂(s) =
1?
2
(cos U(s)´ sin U(s) , cos U(s) + sin U(s))

dT̂
ds

=
1?
2 s

(´ sin U(s)´ cos U(s) , ´ sin U(s) + cos U(s))

S-6: The circle of radius r centred at (0, r) is x2 + (y´ r)2 = r2. The bottom half of this
circle is

y = g(x) = r´
a

r2 ´ x2

So

g1(x) =
x?

r2 ´ x2
g1(0) = 0

g2(x) =
1?

r2 ´ x2
+

x2

[r2 ´ x2]3/2 g2(0) =
1
r

As f (x) and g(x) have the same second order Taylor approximation at x = 0,
f 2(0) = g2(0) = 1

r .

We may parametrize the curve by r(x) = x ı̂ıı + f (x) ̂. So

r1(x) = ı̂ıı + f 1(x) ̂ r1(0) = ı̂ıı + f 1(0) ̂ = ı̂ıı
r2(x) = f 2(x) ̂ r2(0) = f 2(0) ̂

κ(0) =
|r1(0)ˆ r2(0)|
|r1(0)|3 =

| f 2(0) ı̂ııˆ ̂|
|ı̂ıı|3 = f 2(0)

So κ(0) = f 2(0) = 1
r and r is indeed the radius of curvature of y = f (x) at x = 0.
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S-7:

A. v(t) = r1(t) = (et, 2t + 1)

B. a(t) = r2(t) = (et, 2)

C. ds
dt = |v(t)| = a

e2t + (2t + 1)2

D. T̂(t) =
v(t)
|v(t)| =

(et, 2t + 1)
a

e2t + (2t + 1)2
=

(
et

a

e2t + (2t + 1)2
,

2t + 1
a

e2t + (2t + 1)2

)

E. κ(t) =
|v(t)ˆ a(t)|
(

ds
dt

)3 =

ˇ

ˇ(et, 2t + 1)ˆ (et, 2)
ˇ

ˇ

a

e2t + (2t + 1)23 =
et|1´ 2t|

(e2t + (2t + 1)2)3/2

S-8:

Solution 1: Note that (cos t + sin t)2 + (sin t´ cos t)2 = 2 for all t. So, the points (x, y) on
our curve obey x2 + y2 = 2. That is, we have a circle of radius

?
2. So, κ = 1?

2
.

Solution 2: We use the formula κ =
|v(t)ˆ a(t)|
ˇ

ˇ

ˇ

ˇ

(
ds
dt

)3
ˇ

ˇ

ˇ

ˇ

, remembering that v(t) = r1(t),

a(t) = r2(t), and ds
dt = |r1(t)|.

v(t) = r1(t) = (´ sin t + cos t, cos t + sin t)
a(t) = r2(t) = (´ cos t´ sin t,´ sin t + cos t)

v(t)ˆ a(t) =
[
(´ sin t + cos t)2 + (cos t + sin t)2]k̂ = 2k̂

ds
dt

=

ˇ

ˇ

ˇ

ˇ

dv
dt

ˇ

ˇ

ˇ

ˇ

=
b

(´ sin t + cos t)2 + (cos t + sin t)2 =
?

2

κ =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

v(t)ˆ a(t)
(

ds
dt

)3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=

ˇ

ˇ

ˇ

ˇ

ˇ

2k̂?
23

ˇ

ˇ

ˇ

ˇ

ˇ

=
1?
2

S-9: For the given ellipse

r(t) = a cos t ı̂ıı + b sin t ̂

v(t) = ´a sin t ı̂ıı + b cos t ̂

|v(t)| =
a

a2 sin2 t + b2 cos2 t
a(t) = ´a cos t ı̂ıı´ b sin t ̂

v(t)ˆ a(t) = det




ı̂ıı ̂ k̂
´a sin t b cos t 0
´a cos t ´b sin t 0


 = ab k̂

κ(t) =
|v(t)ˆ a(t)|
|v(t)|3 =

ab

[a2 sin2 t + b2 cos2 t]3/2
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Hence the maximum (minimum) curvature is achieved when the denominator is a
minimum (maximum) which is the case when sin t = 0 (cos t = 0). So κmax = a

b2 and
κmin = b

a2 .

S-10: Parametrize the curve by r(t) = t ı̂ıı + et ̂. Then

v(t) = ı̂ıı + et ̂ v(0) = ı̂ıı + ̂
ds
dt

= |v(t)| =
a

1 + e2t T̂(t) =
v(t)
|v(t)| =

ı̂ıı + et ̂?
1 + e2t

a(t) = et ̂ a(0) = ̂
ds
dt
(0) =

?
2 T̂(0) =

v(0)
|v(0)| =

ı̂ıı + ̂?
2

(a) We’re given y in terms of x, so let’s use Part (e) of Theorem 1.3.3:

κ =

ˇ

ˇ

d2y
dx2

ˇ

ˇ

[
1 +

(dy
dx
)2]3/2 =

ex

[
1 +

(
ex
)2]3/2

κ(0) =
1

[1 + 1]3/2 = 2´3/2

(b)

• The radius of the circle we want is ρ = 1
κ = 23/2. If its centre is at (a, b), then the

circle will have equation (x´ a)2 + (y´ b)2 = 23. So, we will find its centre.

• The unit vector N̂ points from our point (0, 1) towards the centre of the circle. Since
the radius of the circle is 23/2, the centre of the circle will be at (0, 1) + 23/2N̂. So,
we’ll find N̂.

• Since N̂ is a unit vector perpendicular to T̂ =
ı̂ıı + ̂?

2
, we know N̂ will be either

ı̂ıı´ ̂?
2

or
´ı̂ıı + ̂?

2
.

• Using Part (1.3) of the proof of Theorem 1.3.3:

v(t)ˆ a(t) = κ

(
ds
dt

)3

T̂ˆ N̂

(ı̂ıı + ̂)ˆ (̂) = 2´3/2
(?

2
)3 ı̂ıı + ̂?

2
ˆ N̂

k̂ =
1?
2
(ı̂ıı + ̂)ˆ N̂

N̂ =
´ı̂ıı + ̂?

2

So, the centre of our circle is at point (0, 1) + ρN̂ = (0, 1) + 23/2´ı̂ıı+̂

21/2 = (´2, 3). Then
the equation of the circle is (x + 2)2 + (y´ 3)2 = 8.
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S-11: (a) Think of
r(t) = (t, 1)´ (sin t, cos t)

The (t, 1) part gives the position of the centre of the wheel at time t. The other part gives
the position of the thumbtack with respect to the centre of the wheel. In particular,

˝ at time t = 0, r(0) = (0, 0). The thumbtack is on the ground (i.e. at y = 0).
˝ At time t = π, r(π) = (π, 2). The thumbtack is at its highest point (i.e. at y = 2)

and is above the centre of the wheel at x = π.
˝ At time t = 2π, r(2π) = (2π, 0). The thumbtack is back on the ground (i.e. at y = 0)

and is below the centre of the wheel at x = 2π.
˝ At time t = 3π, r(3π) = (3π, 2). The thumbtack is again at its highest point (i.e. at

y = 2) and is above the centre of the wheel at x = 3π.
˝ At time t = 4π, r(4π) = (4π, 0). The thumbtack is back on the ground (i.e. at y = 0)

and is below the centre of the wheel at x = 4π.

Here is a sketch of the curve.

x

y

2π 4π

r(t) =
(
t− sin t , 1− cos t

)

(b) Since

r(t) =
(
t´ sin t , 1´ cos t

)

v(t) = r1(t) =
(
1´ cos t , sin t

)

ds
dt

(t) = |v(t)| = ?
2´ 2 cos t

a(t) = v1(t) =
(

sin t , cos t
)

v(t)ˆ a(t) = det




ı̂ıı ̂ k̂
1´ cos t sin t 0

sin t cos t 0


 =

(
cos t´ 1

)
k̂

the curvature

κ(t) =
|v(t)ˆ a(t)|
|v(t)|3 =

| cos t´ 1|
(2´ 2 cos t)3/2 =

1
23/2

?
1´ cos t

(c) The radius of curvature at time t = π is

ρ(π) =
1

κ(π)
=

1
1/23/2

?
2
= 4

(d) At time π, the tack is at r(π) = (π, 2), which is at the top of its trajectory. Looking at
the sketch in part (a), we see that, at that time N̂(π) = ´̂. So the osculating circle at time
t = π has center

r(π) + ρ(π)N̂(π) = (π, 2) + 4(0,´1) = (π,´2)
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and radius ρ(π) = 4. So the equation of the osculating circle at time π is

(x´ π)2 + (y + 2)2 = 16

S-12: The velocity vector is

v(θ) = x1(θ) ı̂ıı + y1(θ) ̂ = cos
(1

2 πθ2) ı̂ıı + sin
(1

2 πθ2) ̂

Consequently the speed

ds
dθ

(θ) = |v(θ)| = 1 ùñ s(θ) = θ + s(0)

Since s(θ) is zero when θ = 0, we have s(θ) = θ and hence

T̂(s) = v(s) = cos
(1

2 πs2) ı̂ıı + sin
(1

2 πs2) ̂

so that

κ(s) =
ˇ

ˇ

ˇ

ˇ

dT̂
ds

(s)
ˇ

ˇ

ˇ

ˇ

=
ˇ

ˇ´ πs sin
(1

2 πs2) ı̂ıı + πs cos
(1

2 πs2) ̂
ˇ

ˇ = πs

S-13: The curve is y = y(x) = x3/3. Since y1(x) = x2 and y2(x) = 2x, the curvature is

κ(x) =

ˇ

ˇ

d2y
dx2 (x)

ˇ

ˇ

[
1 +

(dy
dx (x)

)2
]3/2 =

ˇ

ˇ2x
ˇ

ˇ

[
1 + x4

]3/2

We’d like to find the critical points of κ(x), but differentiating it looks messy. Since κ(x)
has only nonnegative values, its maxima correspond the the maxima of the function
κ2(x). So, we find the critical points of κ2(x) instead, to save ourselves some
computational toil.

0 =
d
dx

κ(x)2 =
d
dx

4x2

(1 + x4)
3 =

8x

(1 + x4)
3 ´ 3

16x5

(1 + x4)
4 =

8x(1 + x4)´ 3ˆ 16x5

(1 + x4)
4

=
8x(1´ 5x4)

(1 + x4)
4

Note that κ(0) = 0 and κ(x)Ñ 0 as x Ñ ˘8. So the maximum occurs when x = ˘1/ 4
?

5.

Solutions to Exercises 1.4 — Jump to TABLE OF CONTENTS

S-1: T̂ is tangent to the curve, while N̂ is perpendicular to it.
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T̂

N̂

Using the right-hand rule and B̂ = T̂ˆ N̂, B̂ points out of the page (towards the reader).

To see this, point the fingers of your right hand in the direction of T̂, and curl them
inwards until they are in the direction of N̂. To do this, your thumb must be pointing
towards you, not away from you. Your thumb shows the direction of T̂ˆ N̂.

S-2: In this equation, s stands for arclength.

When we take a very small interval from t to t + h, the change in arclength s(t + h)´ s(t)
is approximately |r(t + h)´ r(t)|, because our curve is approximated by a straight line.
So, s(t+h)´s(t)

h « |r(t+h)´r(t)|
h , leading to ds

dt = |dr
dt | = |v(t)|.

The magnitude of velocity is speed; in this text we generally call this v. That is,
v = |v(t)|. This leads to the potentially confusing (but standard) convention that s stands
for arclength, while v stands for speed.

S-3: Solution 1:
Curves a and b are the same curve, just parametrized differently (replace t with ´t to
convince yourself if the picture isn’t enough). So, they ought to have the same torsion.

As in Example 1.4.4, we imagine that the curve is the thread on a bolt. Take a look at your
right hand. If your thumb is pointing up (corresponding to the +z direction), and you’re
looking at the tip of your thumb, your fingers curl anticlockwise. Imagine a screw has
threads matching the curves a and b, and we turn it anticlockwise. The screw would
move down — not in the same direction as our thumb. So these curves are not
right-handed helices, so they have negative torsion.

The curve c sits entirely in a plane (the plane x = 0) so its torsion is zero everywhere.

Solution 2:
Here is the conventional computation for both a(t) and b(t). (The upper sign is for a and
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the lower sign is for b.)

r(t) =
(

cos t , ¯2 sin t , ˘t/2
)

v(t) =
(´ sin t , ¯2 cos t , ˘1/2

)

a(t) =
(´ cos t , ˘2 sin t , 0

)

v(t)ˆ a(t) =
(´ sin t , ¯ cos t/2 , ¯2

)

da
dt

(t) =
(

sin t , ˘2 cos t , 0
)

v(t)ˆ a(t) ¨ da
dt

(t) = ´1

τ(t) =
v(t)ˆ a(t) ¨ da

dt (t)
|v(t)ˆ a(t)|2 = ´ 1

sin2 t + 1
4 cos2 t + 4

ă 0

S-4: (a) If κ(s) ” 0, then dT̂
ds = κ(s)N̂(s) ” 0 so that T̂ is a constant. As a result dr

ds (s) = T̂
and r(s) = sT̂ + r(0) so that the curve is the straight line with direction vector T̂ that
passes through r(0).

(b) If τ(s) ” 0, then dB̂
ds = ´τ(s)N̂(s) ” 0 so that B̂ is a constant. As T̂(s) K B̂,

d
ds

(r(s)´ r(0)) ¨ B̂ = T̂(s) ¨ B̂ = 0

and (r(s)´ r(0)) ¨ B̂ must be a constant. The constant must be zero (set s = 0), so
(r(s)´ r(0)) ¨ B̂ = 0 and r(s) always lies in the plane through r(0) with normal vector B̂.

(c) Parametrize the curve by arc length. Define the “centre of curvature” at s by

rc(s) = r(s) +
1

κ(s)
N̂(s)

Since κ(s) = κ0 is a constant and τ(s) ” 0,

d
ds

rc(s) = T̂(s) +
1
κ0

[
τ(s)B̂´ κ(s)T̂

]
= T̂(s) +

1
κ0

[
0B̂´ κ0T̂

]
= 0

Thus rc(s) = rc is a constant and
ˇ

ˇr(s)´ rc
ˇ

ˇ = 1
κ0

lies on the sphere of radius 1
κ0

centred on
rc. Since τ(s) ” 0, the curve also lies on a plane, so it is a circle.

S-5: (a), (b): T̂ points in the direction of the curve; N̂ is perpendicular to it, in the same
plane, pointing towards the centre of curvature. Using the right-hand rule in the picture,
we see B̂ is pointing to the left.
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z

y

x

x = y

z = x2 + y2

T̂N̂

B̂

(c) The torsion is zero, since the curve lies in a plane (the plane x = y).

S-6: (a) As

r1(t) =
(
et + e´t) ı̂ıı +

(
et ´ e´t) ̂ + 2 k̂

ds
dt

(t) = |r1(t)| =
a

4 + 2e2t + 2e´2t =
?

2
(
et + e´t)

r2(t) =
(
et ´ e´t) ı̂ıı +

(
et + e´t) ̂ r1(t)ˆ r2(t) = ´2

(
et + e´t) ı̂ıı + 2

(
et ´ e´t) ̂ + 4 k̂

the curvature

κ(t) =
|v(t)ˆ a(t)|
(ds

dt
)3 =

2
?

4 + 2e2t + 2e´2t

[4 + 2e2t + 2e´2t]3/2 =
1

2 + e2t + e´2t

(b) The length of C between r(0) and r(1) is
ż 1

0

ds
dt

(t) dt =
?

2
ż 1

0
(et + e´t) dt =

?
2
[
et ´ e´t

]1

0
=
?

2
[
e´ 1

e

]

S-7: The point (2, 4, 8) occurs when t = 2.

v(t) = (1, 2t, 3t2) v(2) = (1, 4, 12)
a(t) = (0, 2, 6t) a(2) = (0, 2, 12)

da
dt

(t) = (0, 0, 6)
da
dt

(2) = (0, 0, 6)

v(2)ˆ a(2) = (24,´12, 2)

|v(2)ˆ a(2)| = 2
?

181

Now, we use a formula for torsion:

τ(t) =
(v(t)ˆ a(t)) ¨ da

dt (t)
|v(t)ˆ a(t)|2

τ(2) =
(24,´12, 2) ¨ (0, 0, 6)

(2
?

181)2
=

3
181

174



S-8: For the specified curve

r(t) = t ı̂ıı +
t2

2
̂ +

t3

3
k̂

v(t) = r1(t) = ı̂ıı + t ̂ + t2 k̂

a(t) = r2(t) = ̂ + 2t k̂

v(t)ˆ a(t) = det




ı̂ıı ̂ k̂
1 t t2

0 1 2t




= t2 ı̂ıı´ 2t ̂ + k̂

a1(t) = 2 k̂

From this, we read off

T̂(t) =
v(t)
|v(t)| =

ı̂ıı + t ̂ + t2 k̂?
1 + t2 + t4

κ(t) =
|v(t)ˆ a(t)|
|v(t)|3 =

?
1 + 4t2 + t4

[1 + t2 + t4]3/2

B̂(t) =
v(t)ˆ a(t)
|v(t)ˆ a(t)| =

t2 ı̂ıı´ 2t ̂ + k̂?
1 + 4t2 + t4

N̂(t) = B̂(t)ˆ T̂(t)

=
1?

1 + t2 + t4
?

1 + 4t2 + t4
det




ı̂ıı ̂ k̂
t2 ´2t 1
1 t t2




=
´(t + 2t3) ı̂ıı + (1´ t4) ̂ + (2t + t3)k̂?

1 + t2 + t4
?

1 + 4t2 + t4

τ(t) =

(
v(t)ˆ a(t)

) ¨ a1(t)
|v(t)ˆ a(t)|2 =

2
1 + 4t2 + t4

S-9: First, some preliminaries:

r(t) = (t3, t, ect) r(5) = (53, 5, e5c)

v(t) = (3t2, 1, cect) v(5) = (3 ¨ 52, 1, ce5c)

a(t) = (6t, 0, c2ect) a(5) = (6 ¨ 5, 0, c2e5c)

da
dt

(t) = (6, 0, c3ect)
da
dt

(5) = (6, 0, c3e5c)

v(5)ˆ a(5) = (c2e5c, 15ce5c(2´ 5c),´30)
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Second, we figure out what value of c makes τ(5) = 0.

0 = τ(5) =
(v(5)ˆ a(5)) ¨ da

dt (5)
|v(5)ˆ a(5)|2

0 = (v(5)ˆ a(5)) ¨ da
dt

(5)

= (c2e5c, 15ce5c(2´ 5c),´30) ¨ (6, 0, c3e5c)

= 6c2e5c(1´ 5c)

c = 0 or c =
1
5

If c = 0, then r(t) = (t3, t, 1), and so the entire curve is contained inside the plane z = 1.
(Its torsion is zero everywhere — not just at t = 5.)

Consider the case c = 1
5 . When t = 5, our curve (and its osculating circle) passes through

the point r(5) = (53, 5, e). The normal vector to the plane of the osculating curve is the
binormal vector B̂(5) = v(5)ˆa(5)

|v(5)ˆa(5)| . Since we don’t need the normal vector to the plane to
be a unit vector, we can take as the normal vector to the plane simply v(5)ˆ a(5), or
(e/25, 3e,´30). Then, an equation of the plane containing the osculating circle is
(e/25)x + (3e)y´ 30z = ´10e. An equivalent equation for this plane is
(1/25)x + 3y´ (30/e)z = ´10.

S-10: (a) Since r1(t) = (2t, 1, 3t2), we have r1(1) = (2, 1, 3). So the normal plane must pass
through r(1) = (1, 1, 1) and be perpendicular to (2, 1, 3). The equation of the normal
plane is then

2(x´ 1) + (y´ 1) + 3(z´ 1) = 0 or 2x + y + 3z = 6

(b) As

v(t) = r1(t) =
(
2t, 1, 3t2) ds

dt
=

a

1 + 4t2 + 9t4

a(t) = v1(t) =
(
2, 0, 6t

)
v(t)ˆ a(t) =

(
6t,´6t2,´2

)

the curvature

κ(t) =
|v(t)ˆ a(t)|
(ds

dt
)3 =

2
?

1 + 9t2 + 9t4

[1 + 4t2 + 9t4]3/2

S-11: First some preliminaries.

v(t) = r1(t) = ´ sin t ı̂ıı + cos t ̂ + k̂
a(t) = r2(t) = ´ cos t ı̂ıı´ sin t ̂

(a), (b) From v(t) we read off

ds
dt

= |v(t)| =
?

2
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From a(t) = d2s
dt2 (t) T̂(t) + κ(t)

(ds
dt (t)

)2N̂(t), and the fact that d2s
dt2 = 0, we read off that

κ(t) =
(ds

dt
(t)
)´2

|a| = 1
2

N̂(t) =
a
|a| = ´ cos t ı̂ıı´ sin t ̂

So radius of curvature is 1
κ = 2 and the centre of curvature is

[
r(t) +

1
κ(t)

N̂(t)
]

t=π/6

=
[(

cos t ı̂ıı + sin t ̂ + tk̂
)
+ 2
(´ cos t ı̂ıı´ sin t ̂

)]
t=π/6

=
[
´ cos t ı̂ıı´ sin t ̂ + t k̂

]
t=π/6

= ´
?

3
2

ı̂ıı´ 1
2

̂ +
π

6
k̂

(c) From

v(t)ˆ a(t) = det




ı̂ıı ̂ k̂
´ sin t cos t 1
´ cos t ´ sin t 0


 = sin t ı̂ıı´ cos t ̂ + k̂

|v(t)ˆ a(t)|2 = 2

we read off

B̂(t) =
v(t)ˆ a(t)
|v(t)ˆ a(t)| =

1?
2

sin t ı̂ıı´ 1?
2

cos t ̂ +
1?
2

k̂

so that

B̂
(

π/6
)
=

1
2
?

2
ı̂ıı´

?
3

2
?

2
̂ +

1?
2

k̂

S-12: (a) The velocity vector is

r1(t) = (´ sin(t), cos(t), 2t)

So a tangent vector at t = π is T = (0,´1, 2π) and a parametric form for the tangent line
is

R(t) = r(π) + tT = (´1, 0, π2) + t(0,´1, 2π)

(b) The speed is

ds
dt

= |r1(t)| =
a

1 + 4t2

By Theorem 1.3.3 of the CLP-4 text, the tangential component of acceleration is

aT(t) =
d2s
dt2 =

d
dt

a

1 + 4t2 =
4t?

1 + 4t2

177



S-13: (a) The velocity vector of the particle at time t is

r1(t) = (cos t´ cos t + t sin t) ı̂ıı + (´ sin t + sin t + t cos t) ̂ + 2t k̂

= t sin t ı̂ıı + t cos t ̂ + 2t k̂

so its speed at time 1 ď t ă 8 is

ds
dt

= |r1(t)| =
a

t2 sin2 t + t2 cos2 t + 4t2 =
?

5 t

(b) The unit tangent at time t is

T̂(T) =
r1(t)
|r1(t)| =

1?
5

(
sin t ı̂ıı + cos t ̂ + 2 k̂

)

So the tangential component of acceleration at time t is

aT(t) =
d2s
dt2 (t) T̂(t) = sin t ı̂ıı + cos t ̂ + 2 k̂

(c) The (full) acceleration is

r2(t) =
d
dt

r1(t) =
(

sin t + t cos t
)

ı̂ıı +
(

cos t´ t sin t
)

̂ + 2 k̂

So the normal component of acceleration at time t is

aN(t) = a(t)´ aT(t) = t cos t ı̂ıı´ t sin t ̂

(d) Another formula for the normal component of acceleration is κ(t)
(ds

dt (t)
)2N̂(t). So the

magnitude of the normal component of acceleration is κ(t)
(ds

dt (t)
)2 and, by part (c),

κ(t)
(

ds
dt

(t)
)2

=
ˇ

ˇt cos t ı̂ıı´ t sin t ̂
ˇ

ˇ = t

Consequently, by part (a),

κ(t) =
t

(
ds
dt (t)

)2 =
1
5t

S-14: (a) If the point (x, y, z) is on the curve, it obeys both z = x2 + y2 and z = 8´ 2x and
hence is also obeys

x2 + y2 = 8´ 2x or (x + 1)2 + y2 = 9

So the curve C is also the intersection of

(x + 1)2 + y2 = 9 and z = 8´ 2x
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(x + 1)2 + y2 = 9 is the circle of radius 3 centred on (´1, 0) and can be parametrized by
x(θ) = ´1 + 3 cos θ, y(θ) = 3 sin θ, 0 ď θ ď 2π. So C can be parametrized by

x(θ) = ´1 + 3 cos θ

y(θ) = 3 sin θ

z(θ) = 8´ 2x(θ) = 10´ 6 cos θ

or r(θ) = [´1 + 3 cos θ] ı̂ıı + 3 sin θ ̂ + [10´ 6 cos θ] k̂

with 0 ď θ ă 2π.

Remark: if we tried to parametrize the equation as (x, y, z) = (x,
?

8´ 2x´ x2, 8´ 2x),
then we would miss the negative y-values.

(b) Note that r(θ) is (2, 0, 4) when θ = 0. As

v(θ) = r1(θ) = ´3 sin θ ı̂ıı + 3 cos θ ̂ + 6 sin θ k̂ v(0) = 3̂

a(θ) = v1(θ) = ´3 cos θ ı̂ıı´ 3 sin θ ̂ + 6 cos θ k̂ a(0) = ´3ı̂ıı + 6k̂

the unit tangent vector at (2, 0, 4) is

T̂(0) =
v(0)
|v(0)| = ̂

and, since v(0)ˆ a(0) = 9k̂ + 18ı̂ıı, the unit binormal vector and curvature at (2, 0, 4) are

B̂(0) =
v(0)ˆ a(0)
|v(0)ˆ a(0)| =

2ı̂ıı + k̂?
5

κ(0) =
|v(0)ˆ a(0)|
|v(0)|3 =

9
?

5
33 =

?
5

3

and the unit normal vector N̂ at (2, 0, 4)

N̂(0) = B̂(0)ˆ T̂(0) =
1?
5
(2ı̂ıı + k̂)ˆ ̂ =

1?
5
(2k̂´ ı̂ıı)

S-15: We have

v(t) = r1(t) = t2 ı̂ıı +
?

2 t ̂ + k̂ |v(t)| =
a

t4 + 2t2 + 1 = t2 + 1

a(t) = v1(t) = 2t ı̂ıı +
?

2 ̂

(a) The unit tangent vector is

T̂(t) =
v(t)
|v(t)| =

t2 ı̂ıı +
?

2 t ̂ + k̂
t2 + 1

(b) Since

v(t)ˆ a(t) = det




ı̂ıı ̂ k̂
t2

?
2 t 1

2t
?

2 0


 = ´

?
2 ı̂ıı + 2t ̂´

?
2 t2 k̂
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The curvature is

κ(t) =
|v(t)ˆ a(t)|
|v(t)|3 =

?
2 + 4t2 + 2t4

(t2 + 1)3 =

?
2

(t2 + 1)2

(c) Note that r(2) is
(8

3 , 2
?

2, 2
)
.

Solution 1: Since

T̂1(t) =
2t ı̂ıı +

?
2 ̂

t2 + 1
´ 2t

t2 ı̂ıı +
?

2 t ̂ + k̂

(t2 + 1)2

T̂1(2) =
4 ı̂ıı +

?
2 ̂

5
´ 4

4 ı̂ıı + 2
?

2 ̂ + k̂
25

=
4 ı̂ıı´ 3

?
2 ̂´ 4k̂

25

|T1(2)| = 5
?

2
25

the principal normal vector N̂ at
(8

3 , 2
?

2, 2
)

is

N̂(2) =
T̂1(2)
|T̂1(2)| =

4 ı̂ıı´ 3
?

2 ̂´ 4k̂
5
?

2

Solution 2: Perhaps we’d rather not differentiate T̂(t).

B̂ =
v(t)ˆ a(t)
|v(t)ˆ a(t)| and N̂ = B̂ˆ T̂

Using our previous work:

B̂(2) =
v(2)ˆ a(2)
|v(2)ˆ a(2)| =

´?2ı̂ıı + 4̂´ 4
?

2k̂?
2 + 16 + 32

=
1
5

(
´ı̂ıı + 2

?
2̂´ 4k̂

)

T̂(2) =
1
5

(
4ı̂ıı + 2

?
2̂ + k̂

)

N̂(2) = B̂(2)ˆ T̂(2) =
1
5

(
´ı̂ıı + 2

?
2̂´ 4k̂

)
ˆ 1

5

(
4ı̂ıı + 2

?
2̂ + k̂

)

=

(
2
?

2
5

)
ı̂ıı +
(
´3

5

)
̂ +

(
´2
?

2
5

)
k̂

S-16: (a) The curve x2 + y2 = 1 is a circle of radius 1. So we can parametrize it by
x(θ) = cos θ, y(θ) = sin θ, 0 ď θ ă 2π. The z-coordinate of any point on the intersection
is determined by z = 1´ x´ y. So we can use

r(θ) = cos θ ı̂ıı + sin θ ̂ + (1´ cos θ ´ sin θ) k̂ 0 ď θ ă 2π
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(b) As

v(θ) = r1(θ) =
(´ sin θ, cos θ, sin θ ´ cos θ

)

a(θ) = v1(θ) =
(´ cos θ,´ sin θ, cos θ + sin θ

)

we have

ds
dθ

= |r1(θ)| =
b

sin2 θ + cos2 θ + (sin θ ´ cos θ)2

=
?

2´ 2 sin θ cos θ

=
b

2´ sin(2θ)

v(θ)ˆ a(θ) =
(
1, 1, 1

)

and the curvature

κ(θ) =
|v(θ)ˆ a(θ)|
(ds

dθ

)3 =

?
3

[2´ sin(2θ)]3/2

(c) The curvature is

˝ a maximum (minimum) when 2´ sin(2θ) is a minimum (maximum),
˝ which is the case when sin(2θ) = 1 (sin(2θ) = ´1),
˝ which in turn is the case when θ = π

4 , 5π
4 (θ = 3π

4 , 7π
4 ).

So

maximum curvature =

?
3

[2´ 1]3/2 =
?

3 at
ı̂ıı?
2
+

̂?
2
+ (1´

?
2) k̂

and ´ ı̂ıı?
2
´ ̂?

2
+ (1 +

?
2) k̂

minimum curvature =

?
3

[2´ (´1)]3/2 =
1
3

at ´ ı̂ıı?
2
+

̂?
2
+ k̂

and
ı̂ıı?
2
´ ̂?

2
+ k̂

S-17: For r(t) to be well-defined, we need t ą 0 (because of the ln t.)

v(t) = r1(t) = 2t ı̂ıı + 2 ̂ +
1
t

k̂
ds
dt

=
a

4t2 + 4 + 1/t2 = 2t +
1
t

The unit tangent vector is

T̂(t) =
r1(t)
|r1(t)| =

2t ı̂ıı + 2 ̂ + 1
t k̂

2t + 1
t

=
2t2 ı̂ıı + 2t ̂ + k̂

2t2 + 1
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so, from §1.5 of the CLP-4 text,

ds
dt

(t) κ(t) N̂(t) = T̂1(t) =
4t ı̂ıı + 2 ̂

2t2 + 1
´ 4t

2t2 ı̂ıı + 2t ̂ + k̂

(2t2 + 1)2 =
4t ı̂ıı + (´4t2 + 2) ̂´ 4t k̂

(2t2 + 1)2

= 2
2t ı̂ıı´ (2t2 ´ 1) ̂´ 2t k̂

(2t2 + 1)2

Since the length of 2t ı̂ıı´ (2t2 ´ 1) ̂´ 2t k̂ is
b

4t2 + (2t2 ´ 1)2 + 4t2 =
a

8t2 + 4t4 ´ 4t2 + 1 =
a

4t4 + 4t2 + 1

=
b

(2t2 + 1)2 = 2t2 + 1

we have

N̂(t) =
2t ı̂ıı´ (2t2 ´ 1) ̂´ 2t k̂

2t2 + 1
and

κ(t) =
|T̂1(t)|
ds
dt (t)

=
2

2t2+1

2t + 1
t
=

2t

(2t2 + 1)2

S-18: (a) Since

r(t) = ı̂ıı +
t2

2
̂ +

t3

3
k̂

r1(t) = t ̂ + t2 k̂
ds
dt

(t) = |r1(t)| =
a

t2 + t4 = t
a

1 + t2

the length of the curve is
ż 1

0

ds
dt

(t)dt =
ż 1

0
t
a

1 + t2 dt =
1
3
[
1 + t2]3/2

ˇ

ˇ

ˇ

1

0
=

1
3
[
23/2 ´ 1

]

(b) For the specified curve

r(t) = cos(t) ı̂ıı + sin(t) ̂ + t k̂

r1(t) = ´ sin(t) ı̂ıı + cos(t) ̂ + 1 k̂

T̂(t) =
´ sin(t) ı̂ıı + cos(t) ̂ + 1 k̂?

2

T̂1(t) =
´ cos(t) ı̂ıı´ sin(t) ̂?

2

T̂1
(

π/4
)
=
´ı̂ıı´ ̂

2

N̂
(

π/4
)
=

T̂1
(

π/4
)

|T̂1(π/4
)| =

´ı̂ıı´ ̂?
2
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(c) Recalling, from §1.5 in the CLP-4 text, that

T̂1(t) = κ(t)
ds
dt

(t) N̂(t)

we have, by part (d),

κ
(

π/4
)
=
|T̂1(π/4

)|
|r1(π/4

)| =
1/
?

2?
2

=
1
2

S-19: (a), (b), (c) We have

r(t) =
(
t + 2 , 1´ t , t2/2

)

v(t) = r1(t) =
(
1 , ´1 , t

)

ds
dt

(t) = |v(t)| =
a

2 + t2

a(t) = v1(t) =
(
0 , 0 , 1

)

(d) By §1.5 of the CLP-4 text, the curvature

κ(t) =
|v(t)ˆ a(t)|
(ds

dt (t))
3

=
|(´1,´1, 0)|
[2 + t2]3/2 =

?
2

[2 + t2]3/2

(e) Since ds
dt (t) =

?
2 + t2, we have d2s

dt2 (t) = t?
2+t2 and

(
0 , 0 , 1

)
= a(t) =

d2s
dt2 T̂(t) + κ(t)

(ds
dt

)2
N̂(t)

=
t?

2 + t2

(1 , ´1 , t)?
2 + t2

+

?
2

[2 + t2]3/2

(a
2 + t2

)2N̂(t)

or ?
2?

2 + t2
N̂(t) =

(
0 , 0 , 1

)´ (t , ´t , t2)

2 + t2 =
(´t , t , 2)

2 + t2

which implies

N̂(t) =
(´t , t , 2)
a

2(2 + t2)

(f) At t = 0

r(0) = (2, 1, 0)

T̂(0) =
(1,´1, 0)?

2
N̂(0) = (0, 0, 1)

B̂(0) = T̂(0)ˆ N̂(0) =
1?
2
(1,´1, 0)ˆ (0, 0, 1) =

1?
2
(´1,´1, 0)
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The osculating plane is the plane through r(0) which is perpendicular to B̂(0), which is

1?
2
(´1,´1, 0) ¨  (x, y, z)´ (2, 1, 0)

(

= 0 or x + y = 3

(g) The osculating circle has centre

r(0) +
1

κ(0)
N̂(0) = (2, 1, 0) +

1
1/2

(0, 0, 1) = (2, 1, 2)

S-20: First some preliminary computations.

r(t) =
t3

3
ı̂ıı +

t2
?

2
̂ + t k̂

r1(t) = t2 ı̂ıı +
?

2t ̂ + k̂ |r1(t)| =
a

t4 + 2t2 + 1 = t2 + 1

r2(t) = 2t ı̂ıı +
?

2 ̂

r1(t)ˆ r2(t) = det




ı̂ıı ̂ k̂
t2

?
2t 1

2t
?

2 0


 = ´

?
2 ı̂ıı + 2t ̂´

?
2t2 k̂

(a) The unit tangent vector is

T̂(t) =
r1(t)
|r1(t)| =

t2 ı̂ıı +
?

2t ̂ + k̂
t2 + 1

(b) The curvature is (see §1.5 of the CLP-4 text)

κ(t) =
|r1(t)ˆ r2(t)|
|r1(t)|3 =

| ´?2 ı̂ıı + 2t ̂´?2t2 k̂|
(t2 + 1)3 =

?
2 + 4t2 + 2t4

(t2 + 1)3

=

?
2

(t2 + 1)2

(c) At t = 0
κ(0) =

?
2

For ease of computation, we’ll find B̂ first, then use it to find N̂.

(e) At t = 0, the binormal vector is (see §1.5 of the CLP-4 text)

B̂(0) =
r1(0)ˆ r2(0)
|r1(0)ˆ r2(0)| =

´?2 ı̂ıı?
2

= ´ı̂ıı

(d) At t = 0, the principal normal vector is (see §1.5 of the CLP-4 text)

N̂(0) = B̂(0)ˆ T̂(0) = ´ı̂ııˆ k̂ = ̂
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S-21: The curve has

r(t) = (t2 , t , t3)

v(t) = r1(t) = (2t , 1 , 3t2)

a(t) = r2(t) = (2 , 0 , 6t)

(a) In particular, a (non unit) tangent vector at r(´1) = (1,´1,´1) is r1(´1) = (´2, 1, 3).
So the tangent line to the curve at (1,´1,´1) is

(x, y, z)´ (1,´1,´1) = t(´2, 1, 3)

or

x = 1´ 2t
y = ´1 + t
z = ´1 + 3t

(b) At r(1) = (1, 1, 1),

v(1) = r1(1) = (2, 1, 3)
a(1) = r2(1) = (2, 0, 6)

v(1)ˆ a(1) = (6,´6,´2)

So the unit binormal vector is

B̂(1) =
v(1)ˆ a(1)
|v(1)ˆ a(1)| =

(3,´3,´1)
|(3,´3,´1)| =

1?
19

(3,´3,´1)

An equation for the osculating plane is

(3,´3,´1) ¨ (x´ 1 , y´ 1 , z´ 1) = 0 or 3x´ 3y´ z = ´1

S-22: (a) For this curve

r1(t) = t sin t ı̂ıı + t cos t ̂ + 2t k̂
ds
dt

(t) = |r1(t)| = ?
5 t

so the length of the curve from t = 0 to t = π is
ż π

0

ds
dt

(t)dt =
?

5
ż π

0
t dt =

?
5 π2

2

(b) The unit tangent vector is

T̂(t) =
r1(t)
|r1(t)| =

1?
5

(
sin t ı̂ıı + cos t ̂ + 2 k̂

)

185



so that

κ(t)
ds
dt

(t) N̂(t) =
dT̂
dt

(t) =
1?
5

(
cos t ı̂ıı´ sin t ̂

)

which implies that

κ(t)

ds
dt (t)

hkkikkj?
5 t =

1?
5

ˇ

ˇ

(
cos t ı̂ıı´ sin t ̂

)ˇ
ˇ =

1?
5
ùñ κ(t) =

1
5t

S-23: (a) For the specified curve

r(t) =
(

4
?

2
3

t3/2,
4
?

2
3

t3/2, t(2´ t)
)

v(t) =
(
2
?

2t1/2, 2
?

2t1/2, 2´ 2t
)

|v| =
a

8t + 8t + 4´ 8t + 4t2 =
b

4(1 + 2t + t2) = 2(1 + t)

The rocket is at z = 0 when t = 0 and when t = 2. So the distance travelled is

ż 2

0
|v(t)| dt =

ż 2

0
2(1 + t) dt = 2

[
t +

t2

2

]2

0
= 8

(b) The rocket is at its maximum height when dz
dt = 2´ 2t = 0. That is, when t = 1. Its

velocity then is (2
?

2, 2
?

2, 0). A unit vector in this direction is T̂(1) = 1?
2
(1, 1, 0). That is

the unit tangent vector.

At general t, the unit tangent is

T̂(t) =
v(t)
|v(t)| =

(?
2t1/2,

?
2t1/2, 1´ t

)

1 + t

So

T̂1(t) =

(?
2t´1/2/2,

?
2t´1/2/2,´1

)

1 + t
´
(?

2t1/2,
?

2t1/2, 1´ t
)

(1 + t)2

T̂1(1) =

(?
2/2,

?
2/2,´1

)

2
´
(?

2,
?

2, 0
)

4
=
(
0, 0,´1/2

)

So the principal unit normal vector is

N̂(1) =
T̂1(1)
|T̂1(1)| = (0, 0,´1)
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(c) As

dT̂
dt

(1) =
(
0, 0,´1/2

) ds
dt

(1) = |v(1)| = 4

the curvature

κ(1) =
|T̂1(1)|
|v(1)| =

1
8

S-24: (a) For the specified curve

r(t) =
(

cos3 t, sin3 t, 2 sin2 t
)

v(t) =
(´ 3 cos2 t sin t, 3 sin2 t cos t, 4 sin t cos t

)
= sin t cos t(´3 cos t, 3 sin t, 4)

|v(t)| = sin t cos t
a

9 cos2 t + 9 sin2 t + 16 = 5 sin t cos t

So the distance travelled is
ż π/2

0
|v(t)|dt =

ż π/2

0
5 sin t cos t dt =

5
2

sin2 t
ˇ

ˇ

ˇ

π/2

0
=

5
2

(b) Since

v(t) = sin t cos t(´3 cos t, 3 sin t, 4) |v(t)| = 5 sin t cos t

we have

T̂(t) =
v(t)
|v(t)| =

1
5
(´3 cos t, 3 sin t, 4) T̂

(
π/6
)
=

1
5

(
´ 3

2
,

3
?

3
2

, 4
)

T̂1(t) =
1
5
(3 sin t, 3 cos t, 0) T̂1

(
π/6
)
=

1
5

(3
?

3
2

,
3
2

, 0
)
=

3
10

(?
3, 1, 0

)

N̂
(

π/6
)
=

T̂1
(

π/6
)

|T̂1(π/6
)| =

1
2
(?

3, 1, 0
)

B̂(π/6
)
= T̂

(
π/6
)ˆ N̂

(
π/6
)

=
1

10
(´ 4, 4

?
3,´6)

=
1
5
(´ 2, 2

?
3,´3)

S-25: (a) The curve x2 + y2 = 1 is a circle of radius 1. So we can parametrize it by
x(θ) = cos θ, y(θ) = sin θ, 0 ď θ ă 2π. The z-coordinate of any point on the intersection
is determined by z = x2 ´ y2. So we can use the parametrization

r(θ) = cos θ ı̂ıı + sin θ ̂ + [cos2 θ ´ sin2 θ] k̂

= cos θ ı̂ıı + sin θ ̂ + cos(2θ) k̂ 0 ď θ ă 2π
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(b) Note that r(θ) =
(
1/
?

2 , 1/
?

2 , 0
)

when θ = π
4 . For general θ, the velocity and

acceleration are

v(θ) = r1(θ) = ´ sin θ ı̂ıı + cos θ ̂´ 2 sin(2θ) k̂

a(θ) = v1(θ) = ´ cos θ ı̂ıı´ sin θ ̂´ 4 cos(2θ) k̂

In particular,

v(π/4) = ´ 1?
2

ı̂ıı +
1?
2

̂´ 2 k̂

a(π/4) = ´ 1?
2

ı̂ıı´ 1?
2

̂

ds
dθ

(π/4) = |v(π/4)| = ?
5

v(π/4)ˆ a(π/4) = ´
?

2 ı̂ıı +
?

2 ̂ + k̂

|v(π/4)ˆ a(π/4)| = ?
5

So the curvature

κ(π/4) =
|v(π/4)ˆ a(π/4)|

|v(π/4)|3 =
1
5

(c) The binormal to C at
(
1/
?

2 , 1/
?

2 , 0
)

is

B̂(π/4) =
v(π/4)ˆ a(π/4)
|v(π/4)ˆ a(π/4)| =

´?2 ı̂ıı +
?

2 ̂ + k̂?
5

So the osculating plane to C at
(
1/
?

2 , 1/
?

2 , 0
)

is
(´

?
2 ,
?

2 , 1
) ¨ (x´ 1/

?
2 , y´ 1/

?
2 , z´ 0

)
= 0 or

z =
?

2 x´
?

2 y

(d) From the computations in parts (b) and (c), we have

T̂(π/4) =
v(π/4)
|v(π/4)| =

´1/
?

2 ı̂ıı + 1/
?

2 ̂´ 2 k̂?
5

B̂(π/4) =
v(π/4)ˆ a(π/4)
|v(π/4)ˆ a(π/4)| =

´?2 ı̂ıı +
?

2 ̂ + k̂?
5

N̂(π/4) = B̂(π/4)ˆ T̂(π/4) =
´ı̂ıı´ ̂?

2

So the osculating circle has radius 1/κ(π/4) = 5 and centre

rc(π/4) = r(π/4) +
N̂(π/4)
κ(π/4)

=
(
1/
?

2 , 1/
?

2 , 0
)´ 5

(
1/
?

2 , 1/
?

2 , 0
)

=
(´ 2

?
2 , ´2

?
2 , 0

)
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S-26: We’ll solve this problem twice, using two different strategies. (The second strategy
will be much more efficient than the first one.) Both strategies use that F = ma. Since we
are told that m = 2, we just have to find the acceleration a at (1, 1, 1).

Strategy 1: In the first strategy, we’ll find the position r(t), as a function of time t and
then differentiate twice to get the acceleration a(t).

˝ First we’ll find any old parametrization. We are told that, on the path, z = x and
z = y2. So let’s use y as the parameter. Then x = z = y2. So the parametrization is
R(y) = y2 ı̂ıı + y ̂ + y2 k̂. (We’ll save the notation “r(t)” for the parametrization with
respect to time.)

˝ Next we’ll reparametrize to get the time t as the parameter. Since

dR
dy

= 2y ı̂ıı + ̂ + 2y k̂

ùñ ds
dy

=
ˇ

ˇ2y ı̂ıı + ̂ + 2y k̂
ˇ

ˇ =
b

1 + 8y2

We are told that the speed ds
dt = 3 for all t. So, choosing our zero point for time to

coincide with our zero point for s, we have s = 3t, or t = s/3 so that

dt
dy

=
1
3

b

1 + 8y2

We could now integrate to get t as a function of y. But that looks quite messy.
Fortunately we only need the acceleration at one point, namely (1, 1, 1). We’ll now
see that that saves quite a bit of work. Pretend that we have integrated to get t as a
function of y and call the answer t(y). Call the inverse function, which gives y as a
function of t, y(t).

˝ We now have r(t) = R
(
y(t)

)
. So, by the chain rule,

r1(t) = R1
(
y(t)

)
y1(t)

r2(t) = R1
(
y(t)

)
y2(t) + R2

(
y(t)

)
y1(t)2

We’re only interest in the time, call it t0, at which y(t0) = 1. The acceleration at time
t0 is

r2(t0) = R1
(
y(t0)

)
y2(t0) + R2

(
y(t0)

)
y1(t0)

2

= R1(1) y2(t0) + R2(1) y1(t0)
2

=
[
2 ı̂ıı + ̂ + 2 k̂

]
y2(t0) +

[
2 ı̂ıı + 2 k̂

]
y1(t0)

2

so we just have to find y1(t0) and y2(t0).
˝ We know that dt

dy = 1
3

a

1 + 8y2. So by the inverse function theorem

dy
dt

(t) =
3

a

1 + 8y(t)2

d2y
dt2 (t) = ´1

2
3
(
16y(t)y1(t)

)

[1 + 8y(t)2]3/2
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In particular

y1(t0) =
3

a

1 + 8y(t0)2
=

3?
1 + 8

= 1

y2(t0) = ´ 24 y(t0)y1(t0)

[1 + 8y(t0)2]3/2 = ´24ˆ 1ˆ 1

(1 + 8)3/2 = ´8
9

˝ Finally, the force is

2r2(t0) = 2
[
2 ı̂ıı + ̂ + 2 k̂

]
y2(t0) + 2

[
2 ı̂ıı + 2 k̂

]
y1(t0)

2

= ´16
9
[
2 ı̂ıı + ̂ + 2 k̂

]
+ 2
[
2 ı̂ıı + 2 k̂

]

=
4
9

ı̂ıı´ 16
9

̂ +
4
9

k̂

Strategy 2: The second strategy will be based on (see §1.5 in the CLP-4 text)

a =
d2s
dt2 T̂ + κ

(ds
dt

)2
N̂

In this problem, we are told that ds
dt = 3 for all t, so that d2s

dt2 = 0 and

a = 9κN̂

So we just have to find the curvature, κ, and unit normal, N̂, at (1, 1, 1). We have already
found one parametrization of the path in strategy 1, namely

R(y) = y2 ı̂ıı + y ̂ + y2 k̂

Note that R(1) = (1, 1, 1). Since

R1(y) = 2y ı̂ıı + ̂ + 2y k̂

T̂(y) =
R1(y)
|R1(y)| =

2y ı̂ıı + ̂ + 2y k̂
a

1 + 8y2

T̂1(y) =
2 ı̂ıı + 2 k̂
a

1 + 8y2
´ 16y

2
2y ı̂ıı + ̂ + 2y k̂
[1 + 8y2]3/2

T̂1(1) =
2 ı̂ıı + 2 k̂

3
´ 8

2 ı̂ıı + ̂ + 2 k̂
27

=
2 ı̂ıı´ 8 ̂ + 2 k̂

27
we have (again see §1.5 in the CLP-4 text)

κ(1) =
|T̂1(1)|
|R1(1)|

N̂(1) =
T̂1(1)
|T̂1(1)|

F = ma = 2ˆ 9κ(1)N̂(1) = 18
T̂1(1)
|R1(1)| = 18

2 ı̂ıı´ 8 ̂ + 2 k̂
27
?

1 + 8ˆ 12

=
4
9
(ı̂ıı´ 4 ̂ + k̂)
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S-27: (a) As

r(t) = 2tı̂ıı + t2 ̂ +
?

3t2k̂

r1(t) = 2ı̂ıı + 2t̂ + 2
?

3tk̂

the unit tangent vector is

T̂(t) =
ı̂ıı + t̂ +

?
3tk̂

|ı̂ıı + t̂ +
?

3tk̂| =
ı̂ıı + t̂ +

?
3tk̂?

1 + 4t2

(b) Since

dT̂
dt

(t) =
̂ +

?
3k̂?

1 + 4t2
´ 4t

ı̂ıı + t̂ +
?

3tk̂

(1 + 4t2)3/2 =
´4tı̂ıı + ̂ +

?
3k̂

(1 + 4t2)3/2

the unit normal is

N̂(t) =
´4tı̂ıı + ̂ +

?
3k̂

| ´ 4tı̂ıı + ̂ +
?

3k̂| =
´4t ı̂ıı + ̂ +

?
3k̂

2
?

1 + 4t2

(c) The unit binormal is

B̂(t) = T̂(t)ˆ N̂(t)

=
1

2(1 + 4t2)
det




ı̂ıı ̂ k̂
1 t

?
3t

´4t 1
?

3




=
´?3(1 + 4t2)̂ + (1 + 4t2)k̂

2(1 + 4t2)

= ´
?

3
2

̂ +
1
2

k̂

which is 3©.

(d) The plane contains the point r(0) = 0 and is perpendicular to the vector ´
?

3
2 ̂ + 1

2 k̂
and so is

´?3y + z = 0

(e) The curvature is

κ(t) =
ˇ

ˇ

ˇ

dT̂
dt

(t)
ˇ

ˇ

ˇ
/
ˇ

ˇ

ˇ

ds
dt

ˇ

ˇ

ˇ
=
| ´ 4tı̂ıı + ̂ +

?
3k̂|

(1 + 4t2)3/2
1

|2ı̂ıı + 2t̂ + 2
?

3tk̂|

=

?
4 + 16t2

(1 + 4t2)3/2
1

2
?

1 + 4t2
=

1

(1 + 4t2)3/2

(f), (g) The denominator (1 + 4t2)
3/2 of κ(t) is a minimum at t = 0 and grows without

bound as |t| increases. So the denominator never achieves a maximum. Consquently, the
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curvature κ(t) achieves its maximum value when t = 0 and so at r(0) = (0, 0, 0). The
curvature never achieves a minimum.

(h) Since
?

3 v + w = 4 k̂ and v´?3 w = 4 ̂,

ı̂ıı =
u
2

̂ =
v´?3 w

4
k̂ =

?
3 v + w

4

Since u = 2 ı̂ıı and v = ̂ +
?

3 k̂,

r(t) = t u + t2 v = a(t)u + b(t)v + c(t)w with a(t) = t, b(t) = t2, c(t) = 0

The curve
(
a(t), b(t)

)
= (t, t2) is the curve y = x2. It is “curviest” at the origin, which is

consistent with part (f). It becomes flatter and flatter as |t| increases, but never achieves
“perfect flatness”, which is consistent with (g).

u

v

x

y

y = x2

C

S-28: The three unit vectors T̂, N̂ and B̂ are mutually perpendicular and form a right
handed triple.

B̂

N̂

T̂

So
N̂ = B̂ˆ T̂ N̂ˆ T̂ = ´B̂ B̂ˆ N̂ = ´T̂

and

dN̂
ds

=
dB̂
ds
ˆ T̂ + B̂ˆ dT̂

ds
= ´τ N̂ˆ T̂ + B̂ˆ (κN̂

)
= τ B̂´ κT̂

S-29: (a) Parametrizing the curve by θ gives

r(θ) =
(

sin(2θ), 1´ cos(2θ), 2 cos θ
)
,

v = r1(θ) =
(
2 cos(2θ), 2 sin(2θ),´2 sin θ

)
,

a = r2(θ) =
(´ 4 sin(2θ), 4 cos(2θ),´2 cos θ

)
.
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At the point P, we have θ = π/4, giving instantaneous values

r = (1, 1,
?

2), v =
(
0, 2,´

?
2
)
, v = |v| = ?

6, a =
(´ 4, 0,´

?
2
)
.

Hence T̂ = v
|v| =

1?
6

(
0, 2,´?2

)
.

Now B̂ = vˆa
|vˆa| =

1?
26

(´?2, 2
?

2, 4
)
= 1?

13

(´ 1, 2, 2
?

2
)
, since

vˆ a =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ı̂ıı ̂ k̂
0 2 ´?2
´4 0 ´?2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
(´ 2

?
2, 4
?

2, 8
)
, |vˆ a| =

?
104 = 2

?
26.

This leads to

N̂ = B̂ˆ T̂ =
1?
78

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ı̂ıı ̂ k̂
´1 2 2

?
2

0 2 ´?2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ´ 1?
78

(
6
?

2,
?

2, 2
)
= ´ 1?

39

(
6, 1,

?
2
)
.

Finally,

κ =
|vˆ a|

v3 =
2
?

26

(
?

6)3 =
2
?

2
?

13
6
?

2
?

3
=

?
13

3
?

3
=

?
39
9

.

(b) Now parametrize the curve by time, t, and write v = r1(t), v = |r1(t)| and a = r2(t).
Note that in part (a) we used v, v and a with different meanings. We use the dot product
to extract the tangential and normal components of a = dv

dt T̂ + v2κN̂:

a ¨ T̂ =

(
dv
dt

T̂ + v2κN̂
)
¨ T̂

=
dv
dt

T̂ ¨ T̂ + (v2κ)N̂ ¨ T̂

Since T̂ is a unit vector, T̂ ¨ T̂ = }T̂}2 = 1; since T̂ and N̂ are perpendicular, T̂ ¨ N̂ = 0.

=
dv
dt

This gives us a nice way to compute dv
dt , the rate of change of speed.

dv
dt

= a ¨ T̂ = (´2, 3,´2
?

2) ¨ 1?
6

(
0, 2,´

?
2
)

=
1?
6
[0 + 6 + 4] =

10?
6
=

5
3

?
6.

Similarly, a ¨ N̂ = v2κ, so

v2 =
1
κ

a ¨ N̂ =
9?
39
´1?

39
(´2, 3,´2

?
2) ¨ (6, 1,

?
2
)
=

9ˆ 13
39

= 3.

Hence |v| = ?
3; since v = |v|, v =

?
3. Then

v = |v|T̂ = vT̂ =
?

3?
6

(
0, 2,´?2

)
= (0,

?
2,´1).
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S-30: (a) The position, velocity and acceleration are

r(t) =
(

cos t , sin t , c sin t
)

v(t) = r1(t) =
(´ sin t , cos t , c cos t

)

a(t) = r2(t) =
(´ cos t , ´ sin t , ´c sin t

)

(b) The speed is

v(t) = |v(t)| =
a

1 + c2 cos2 t

(c) By Theorem 1.3.3.c in the CLP-4 text, the tangential component of the acceleration is

d2s
dt2 =

d
dt

a

1 + c2 cos2 t =
´c2 sin t cos t?

1 + c2 cos2 t

(d) y(t) = sin t and z(t) = c sin t obey z(t) = cy(t) for all t. So the curve lies on the plane
z = cy.

S-31: (a) For the specified curve r(π) =
(´ 4, 0, 1

4

)
and

r(θ) =
(

4 cos θ , 2 sin θ ,
1
4

cos(2θ)
)

v(θ) = r1(θ) =
(
´ 4 sin θ , 2 cos θ , ´1

2
sin(2θ)

)

a(θ) = r2(θ) =
(
´ 4 cos θ , ´2 sin θ , ´ cos(2θ)

)

v(π) =
(
0 , ´2 , 0

)

a(π) =
(
4 , 0 , ´1

)

v(π)ˆ a(π) =
(
2 , 0 , 8

)

So the curvature at θ = π is

κ(π) =
|v(π)ˆ a(π)|
|v(π)|3 =

|(2, 0, 8)|
|(0,´2, 0)|3 =

?
17
4

(b) The radius is
1

κ(π)
=

4?
17

(c) Set R(t) = r(t2). Then

R1(t) = 2t r1(t2)

R2(t) = 2 r1(t2) + 4t2 r2(t2)
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In particular,

R(
?

π) =
(
´ 4 , 0 ,

1
4

)

R1(
?

π) = 2
?

π v(π) =
(
0 , ´4

?
π , 0

)

speed =
ˇ

ˇR1(
?

π)
ˇ

ˇ = 4
?

π

acceleration = R2(
?

π) = 2 v(π) + 4π a(π) =
(
16π , ´4 , ´4π

)

The normal component of the acceleration has magnitude

κ
(ds

dt

)2
=

?
17
4
(
4
?

π
)2

= 4
?

17 π

Solutions to Exercises 1.6 — Jump to TABLE OF CONTENTS

S-1: We want to add up all the tiny pieces of arclength ds along a curve C. So, the integral
would simply be

ş

C ds.

To see this another way, if we define r = (x(t), y(t), z(t)) for a ď t ď b to be the equation
of C, we could calculate the arclength as:

ż b

a
|r1(t)|dt =

ż b

a

b

x1(t)2 + y1(t)2 + z1(t)2dt

This fits the form of Definition 1.6.1 with f (x, y, z) = 1, so we write it as a line integral as
ş

C 1ds, which is equivalent to
ş

C ds.

S-2: (a) The curve is r(θ) = x(θ) ı̂ıı + y(θ) ̂ with x(θ) = r(θ) cos θ, y(θ) = r(θ) sin θ and
θ1 ď θ ď θ2. On this curve

v(θ) =
dr
dθ

(θ) = x1(θ)ı̂ıı + y1(θ)̂ =
[
r1(θ) cos θ ´ r(θ) sin θ

]
ı̂ıı +
[
r1(θ) sin θ + r(θ) cos θ

]
̂

ùñ ds
dθ

(θ) =

b[
r1(θ) cos θ ´ r(θ) sin θ

]2
+
[
r1(θ) sin θ + r(θ) cos θ

]2

=
b

r1(θ)2 + r(θ)2

Hence
ż

C
f (x, y) ds =

ż θ2

θ1

f
(
x(θ), y(θ)

)ds
dθ

dθ

=

ż θ2

θ1

f
(
r(θ) cos θ, r(θ) sin θ

)
d

r(θ)2 +

(
dr
dθ

(θ)

)2

dθ

(b) In this case f (x, y) = 1, r(θ) = 1 + cos θ, θ1 = 0 and θ2 = 2π,
ż

C
ds =

ż 2π

0

b

[1 + cos θ]2 + [´ sin θ]2 dθ =

ż 2π

0

b

2(1 + cos θ)dθ

=

ż 2π

0

c

4 cos2 θ

2
dθ = 2

ż 2π

0

ˇ

ˇ

ˇ

ˇ

cos
θ

2

ˇ

ˇ

ˇ

ˇ

dθ = 4
ż π

0
cos

θ

2
dθ = 8 sin

θ

2

ˇ

ˇ

ˇ

ˇ

π

0
= 8
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S-3: Following Definition 1.6.1:
ż

C

(xy
z

)
ds =

ż 2

1

(
2
3 t3 ¨ ?3t2

3t

)
b

(2t2)2 + (2
?

3t)2 + (3)2 dt

=

ż 2

1

(
2

3
?

3
t4
)
(2t2 + 3)dt =

4
21
?

3
(27 ´ 1) +

2
5
?

3
(25 ´ 1)

S-4: We parametrize the unit circle as (cos t, sin t), 0 ď t ď 2π.

A tiny slice of the hoop with length ds has mass (x2 kg/m)(ds m) = x2ds kg. So, the
entire hoop has mass:

ż

C
x2 ds =

ż 2π

0
cos2 t

b

(´ sin t)2 + (cos t)2 dt =
ż 2π

0
cos2 t dt

=

ż 2π

0

1 + cos(2t)
2

dt =
[

t
2
+

sin(2t)
4

]2π

0
= π kg

For an efficient, sneaky, way to evaluate
ş2π

0 cos2 t dt, see Example 2.4.4 in the CLP-4 text.

S-5: To parametrize C, we note the vector between the two points is
(2´ 1, 4´ 2, 5´ 3) = (1, 2, 2). So, the line is (1, 2, 3) + t(1, 2, 2) for 0 ď t ď 1. That is,
x(t) = 1 + t, y(t) = 2 + 2t, and z(t) = 3 + 2t.

ż

C
(xy + z)ds =

ż 1

0
((1 + t)(2 + 2t) + (3 + 2t))

a

11 + 22 + 22dt

=

ż 1

0
3
(
5 + 6t + 2t2) dt = 26

S-6: (a) In this case r(t) = tı̂ıı + t2 ̂, so that v(t) = dr
dt (t) = ı̂ıı + 2t̂ and ds

dt =
?

1 + 4t2. Hence
ż

C
f (x, y, z)ds =

ż 1

0
x(t) cos z(t)

ds
dt

dt =
ż 1

0
t(cos 0)

a

1 + 4t2 dt =
1
8
(1 + 4t2)

3/2

3/2

ˇ

ˇ

ˇ

ˇ

1

0

=
53/2 ´ 1

12

(b) In this case r(t) =
(
t, 2

3 t3/2, t
)
, so that v(t) = dr

dt (t) =
(
1, t1/2, 1

)
and ds

dt =
?

2 + t.
Hence

ż

C
f (x, y, z)ds =

ż 2

1

x(t) + y(t)
y(t) + z(t)

ds
dt

dt =
ż 2

1

t + 2
3 t3/2

2
3 t3/2 + t

?
2 + t dt =

(2 + t)3/2

3/2

ˇ

ˇ

ˇ

ˇ

2

1

=
8´ 33/2

3/2
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S-7: In the figure below, we construct a triangle with θ = arcsec t; the hypotenuse has
length t, while the side adjacent to θ has length 1. By the Pythagorean Theorem, the

remaining side has length
?

t2 ´ 1, so sin θ = sin(arcsec t) =
?

t2´1
t .

θ

1

?
t2 ´ 1

t

Remember d
dttln tu = 1

t and d
dttarcsec tu = 1

|t|
?

t2´1
. In our range, 1 ď t ď ?2, we have

|t| = t.

ż

C
sin x ds =

ż

?
2

1
sin (arcsec t)

d(
1

t
?

t2 ´ 1

)2

+

(
1
t

)2

dt

=

ż

?
2

1

?
t2 ´ 1

t

d

1
t2(t2 ´ 1)

+
1
t2 dt

=

ż

?
2

1

1
t

dt =
1
2

ln 2

S-8: (a) Since the particle has mass m = 1, Newton’s law of motion ma = F simplifies to

r2(t) = ̂´ sin t k̂

Integrating once gives
r1(t) = t ̂ + cos t k̂ + C

for some constant vector C. To satisfy the initial condition that r1(0) = v0 = ı̂ıı + k̂, we
need

ı̂ıı + k̂ = r1(0) = k̂ + C ùñ C = ı̂ıı

So
r1(t) = ı̂ıı + t ̂ + cos t k̂

Integrating a second time, and imposing the initial condition that r(0) = ̂, gives

r(t) = t ı̂ıı +
t2

2
̂ + sin t k̂ + ̂ = t ı̂ıı +

(
1 +

t2

2

)
̂ + sin t k̂

(b) The particle has x(t) = π/2 when t = π/2. So

r(π/2) =
π

2
ı̂ıı +
(

1 +
π2

8

)
̂ + k̂
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(c) The work done is

Work =

ż π/2

0
F(t) ¨ r1(t) dt

=

ż π/2

0

(
̂´ sin t k̂

) ¨ (ı̂ıı + t ̂ + cos t k̂
)

dt

=

ż π/2

0

(
t´ sin t cos t

)
dt

=
[ t2

2
+

1
2

cos2 t
]π/2

0

=
π2

8
´ 1

2

S-9: Here is a sketch of the rectangle R.

x

y

R

L1

L2

L3

L4

n̂

n̂

n̂

n̂

(0,−1) (3,−1)

(3, 1)(0, 1)

Its boundary consists of four line segments.

˝ L1 from (0,´1) to (3,´1), with n̂ = ´̂

˝ L2 from (3,´1) to (3, 1), with n̂ = ı̂ıı
˝ L3 from (3, 1) to (0, 1), with n̂ = ̂

˝ L4 from (0, 1) to (0,´1), with n̂ = ´ı̂ıı

So
ż

C
F ¨ n̂ ds =

ż

L1

F ¨ (´̂)ds +
ż

L2

F ¨ ı̂ıı ds +
ż

L3

F ¨ (̂)ds +
ż

L4

F ¨ (´ı̂ıı)ds

=

ż 3

0
´

y
hkkikkj

(´1) ex dx +

ż 1

´1

x
hkkikkj

(3) y2 dy +

ż 0

3

y
hkkikkj

(1) ex

ds
hkkikkj

(´dx) +
ż ´1

1

x
hkkikkj

(0) y2

ds
hkkikkj

(´dy)

=
[
e3 ´ 1

]
+
[
13 ´ (´1)3]+

[
e3 ´ 1

]
+ 0

= 2e3

The trickiest part of this computation is getting ds correct on L3 and L4 (remembering
that ds is the arc length traveled and so is positive, while dx ă 0 on L3 and dy ă 0 on L4).
To make a more detailed computation of

ş

L3
F ¨ (̂)ds, parametrize L3 by

r(t) = (3, 1) + t
 

(0, 1)´ (3, 1)
(

=
(
3´ 3t, 1

)
0 ď t ď 1
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so that r(0) = (3, 1) is the initial point of L3 and r(1) = (0, 1) is the final point of L3. Then

r1(t) = (´3, 0)
ds
dt

(t) = |r1(t)| = 3

and

ż

L3

F ¨ ̂ ds =
ż 1

0
F
(
r(t)

) ¨ ̂ ds
dt

(t)dt =
ż 1

0

y(t)ex(t)
hkkikkj

e3´3t

ds
dt (t)

hkkikkj

3 dt = ´e3´3t
ˇ

ˇ

ˇ

1

0
= e3 ´ 1

S-10: (a) Since r(t) = t cos t ı̂ıı + t sin t ̂ + t2 k̂

r1(t) =
(

cos t´ t sin t
)
ı̂ıı +
(

sin t + t cos t
)

̂ + 2t k̂
ds
dt

= |r1(t)| =
b(

cos t´ t sin t
)2

+
(

sin t + t cos t
)2

+ (2t)2

=
a

1 + 5t2

r1(π) = ´ı̂ıı´ π ̂ + 2π k̂

T̂(π) =
r1(t)
|r1(t)| =

1?
1 + 5π2

(´ ı̂ıı´ π ̂ + 2π k̂
)

(b)

ż

C

b

x2 + y2 ds =
ż π

0

b

x2(t) + y2(t)
ds
dt

dt =
ż π

0
t
a

1 + 5t2 dt =
[

1
15

(1 + 5t2)3/2
]π

0

=
1

15
[
(1 + 5π2)3/2 ´ 1

]

(c) For every t, the coordinates x(t) = t cos t, y(t) = t sin t, z(t) = t2 obey
x(t)2 + y(t)2 = t2 = z(t) and so the curve lies on z = x2 + y2.

(d) First concentrate on
(
x(t) , y(t)

)
. As t runs from 0 to π, the curve

(
r cos t , r sin t

)

sweeps out half of a circle of radius r. Our
(
x(t) , y(t)

)
does something similar, but the

radius r = t increases from 0 to π. Thus our
(
x(t) , y(t)

)
sweeps out the beginning of a

spiral. At the same time z(t) increases from 0 to π2. So the curve C looks like

z

y
x
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S-11: We use the centre of mass formulae x̄ =

ş

C xρ ds
ş

C ρ ds
, etc. To make the working clearer,

we’ll break these calculations into several steps.

x(t) = t +
1
2

t2 x1(t) = 1 + t

y(t) = t´ 1
2

t2 y1(t) = 1´ t

z(t) =
4
3

t3/2 z1(t) = 2
?

t

b

x1(t)2 + y1(t)2 + z1(t)2 =
a

1 + 2t + t2 + 1´ 2t + t2 + 4t =
b

2(t2 + 2t + 1) =
?

2(t + 1)

ρ(x(t), y(t), z(t)) =
x(t) + y(t)

2
=

(t + t2/2) + (t´ t2/2)
2

= t

ż

C
ρ ds =

ż 4

0
t
?

2(t + 1)dt =
23 ¨ 11

?
2

3
ż

C
xρ ds =

ż 4

0

(
t +

1
2

t2
)

t
?

2(t + 1)dt =
?

2
ż 22

0

(
t4

2
+

3
2

t3 + t2
)

dt

=
?

2
(

29

5
+ 3(25) +

26

3

)
=

25 ¨ 103
?

2
15

ż

C
yρ ds =

ż 4

0

(
t´ 1

2
t2
)

t
?

2(t + 1)dt =
?

2
ż 22

0

(
´ t4

2
+

t3

2
+ t2

)
dt

=
?

2
(
´29

5
+ 25 +

26

3

)
= ´25 ¨ 23

?
2

15
ż

C
zρ ds =

ż 4

0

(
4
3

t3/2
)

t
?

2(t + 1)dt =
4
?

2
3

ż 22

0

(
t7/2 + t5/2

)
dt

=
4
?

2
3

(
210

9
+

28

7

)
=

210 ¨ 37
?

2
7 ¨ 33

x =

ş

xρ ds
ş

ρ ds
=

25¨103
?

2
15

23¨11
?

2
3

=
412
55

« 7.5

y =

ş

yρ ds
ş

ρ ds
=
´25¨23

?
2

15
23¨11

?
2

3

= ´92
55
« ´1.7

z =

ş

zρ ds
ş

ρ ds
=

210¨37
?

2
7¨33

23¨11
?

2
3

=
4736
693

« 6.8

After these long calculations, it’s nice to do a sanity check. Using 0 ď t ď 4, we see our
wire takes up space in the following intervals: 0 ď x ď 12, ´4 ď y ď 1/2, and
0 ď z ď 32/3. The coordinates of our centre of mass all fall in these intervals, which
doesn’t guarantee our answer is correct, but it is a nice sign. If, say x had been negative,
or z were greater than 11, we would have known there was something wrong.
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Solutions to Exercises 1.7 — Jump to TABLE OF CONTENTS

S-1: We don’t have enough information to gauge the size of the vectors, but we can figure
out their direction. Gravity pulls straight down, so the vector ´mĝ points straight down.
The normal force will be normal to the curve.

´mĝ

WN̂

S-2: This equation stems from F = ma. In that equation, a is acceleration — the second
derivative of position with respect to time. So, v is the derivative of position with respect
to time.

We previously used v as the derivative of position with respect to the parameter we use
to define our position — which was often called t, but was not the necessarily time. So
this is a good point to keep straight.

S-3: Solution 1:
For large, negative values of x, the wire is closer and closer to a vertical line. If the bead
were sliding down a vertical wire, it could do so without even touching the wire, so the
force exerted on the bead would be zero. As x approaches 0 from the left, the wire
approximates a horizontal line. If the bead were sitting on a horizontal line, the wire
would be pushing up to counter gravity. So, we imagine the magnitude of the force
exerted by the wire might increase as x increases. That is, dW

dx ą 0.

Solution 2:
The net force exerted on the bead is

F = ma = WN̂´mĝ

We dot both sides with N̂.

WN̂ ¨ N̂´mĝ ¨ N̂ = ma ¨ N̂
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Using the equation a(t) = d2s
dt2 T̂ + κ

(
ds
dt

)2
N̂,

W ´mĝ ¨ N̂ = mκ

(
ds
dt

)2

W = mgn̂ ¨ N̂ + mκ

(
ds
dt

)2

= mg cos θ + mκ

(
ds
dt

)2

where θ is the angle between ̂ and N̂.

As x moves from a highly negative number to zero, θ moves from nearly π/2 to nearly 0.
Therefore cos θ increases from nearly zero to nearly one. Then mg cos θ is increasing.

Furthermore, as x increases, we see from the picture that the curvature κ increases, and
speed ds

dt increases as well (kinetic energy is increasing as potential energy decreases).

So, dW
dx ą 0.

S-4: Equation 1.7.1 defines E = 1
2 m|v|2 + mgy. The skater reaches their highest point

when |v| = 0, so when y = E
mg . This is the same equation as a sufficiently large circular

culvert: it’s the height where all the kinetic energy has been converted into potential
energy. That’s why we never even used the equation y = x2!

S-5: The skateboarder starts going back down at yS = E
mg , so we solve 3 m = E

100kg¨9.8 m
s2

to

find E = 2940 kg¨m2

s2 = 2940J

Remark: we needed the diameter to be greater than 3m for the skateboarder to not be
going all the way around the culvert, but choosing r = 5 leads to an answer no different
from, say, r = 50.

S-6: From the text, the skateboarder will make it all the way around when 5
2(5) ď E

mg .

Energy E is given by E = 1
2 m|v|2 + mgy, the sum of the kinetic and potential energy of

the system. At y = 0, all the energy is kinetic, so E = 1
2 m|v|2, where |v| is the skater’s

velocity at the bottom of the culvert.

So, we solve:

25
2
ď E

mg
=

1
2 m|v|2
m ¨ 9.8

|v| ě 5
?

9.8

So, a speed of 5
?

9.8 m/s or higher is needed. (That’s about 56 kph.)
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S-7: Equation 1.7.2 tells us the normal force exerted by the track is WN̂, where
W = mκ|v|2 + mgk̂ ¨ N̂. (Note in our problem, the vertical direction is k̂, not ̂ as in the
text.) So, we ought to find κ and N.

r(θ) = (3 cos θ, 5 sin θ, 4 + 4 cos θ)

v(θ) = (´3 sin θ, 5 cos θ,´4 sin θ)

|v(θ)| = ds
dθ

=
a

9 sin2 θ + 25 cos2 θ + 16 sin2 θ = 5

a(θ) = (´3 cos θ,´5 sin θ,´4 cos θ)

vˆ a = 5(´4, 0, 3)

κ(θ) =
|vˆ a|
(

ds
dθ

)3 =
25
53 =

1
5

Since d2s
dθ2 = 0, we use the following theorem to find N̂:

a(θ) =
d2s
dθ2 T̂ + κ

(
ds
dθ

)2

N̂

(´3 cos θ,´5 sin θ,´4 cos θ) = 0 +
25
5

N̂

N̂(θ) =

(
´3

5
cos θ,´ sin θ,´4

5
cos θ

)

Using the given quantity |v(t)| = 5 at the specified point,

W
ˇ

ˇ

ˇ

θ=π/4
= mκ|v|2 + mgk̂ ¨ N̂

= (1)
1
5

52 + 1(9.8)
(
´4

5
cos(π/4)

)
= 5´ 39.2

5
?

2

WN̂
ˇ

ˇ

ˇ

θ=π/4
=

(
5´ 39.2

5
?

2

)(
´3

5
cos(π/4),´ sin(π/4),´4

5
cos(π/4)

)

=

(
5´ 39.2

5
?

2

)(
´ 3

5
?

2
,´ 1?

2
,´ 4

5
?

2

)

=

(
´ 3?

2
+ 2.352 , ´ 5?

2
+ 3.92 , ´ 2

?
2 + 3.136

)

S-8: Equation 1.7.2 tells us the normal force exerted by the track is WN̂, where
W = mκ|v|2 + mĝ ¨ N̂. So, we need to find κ and ̂ ¨ N̂ at the point θ = 13π

3 .

Note that θ is the parameter used to describe the track, but it is not time. So |v(θ)| =
ˇ

ˇ

ˇ

dr
dθ

ˇ

ˇ

ˇ
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is not the same as |v|, the speed of the bead.

r(θ) = (sin θ, sin θ ´ θ) v(θ) = (cos θ, cos θ ´ 1)

|v(θ)| = ds
dθ

=
a

2 cos2 θ ´ 2 cos θ + 1 a(θ) = (´ sin θ,´ sin θ)

|vˆ a| = | sin θ| κ(θ) =
|vˆ a|
(

ds
dθ

)3 =
| sin θ|

(2 cos2 θ ´ 2 cos θ + 1)3/2

d2s
dθ2 =

sin θ(1´ 2 cos θ)?
2 cos2 θ ´ 2 cos θ + 1

Equation 1.3.3 part (c) gives us the relation a(θ) = d2s
dθ2 T̂ + κ

(
ds
dθ

)2
N̂. We use this to find

̂ ¨ N̂ at θ = 13π/3 without differentiating (actually, without even finding) T̂.

a(13π/3) =
(
´?3/2,´?3/2

)

d2s
dθ2 (13π/3) = 0

κ(13π/3) =
?

6
ds
dθ

(13π/3) = 1/
?

2

a(θ) ¨ ̂ =
(

d2s
dθ2 T̂ + κ

(
ds
dθ

)2

N̂

)
¨ ̂

´
?

3
2

= 0 +
?

6(1/2)N̂ ¨ ̂

N̂ ¨ ̂ = ´ 1?
2

Now we can find the speed |v| of the bead when |W| = 100 and it breaks off the track.

W = mκ|v|2 + mĝ ¨ N̂
˘100 =

(
1

9.8

)?
6|v|2 + 9.8

9.8

(
´ 1?

2

)

|v| =
d

9.8?
6

(
100 +

1?
2

)
« 20 m/s « 72 kph

(Because |v| ą 0, the equation above has no solution for W = ´100.)

Quite fast! 100 N is a lot of force for such a light object.

S-9: According to the equation in the text, the skier will become airborne when:

|v| ą
c

g
κ
|̂ ¨ N̂|
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We’ll use the equation of the curve to find κ and N̂.

Note that g is given in metres per second, while the other quantities are in kilometres and
hours. Converting, 9.8 m/s2 is the same as(

9.8 m
1 s2

) (
1 km

1000 m

) (3600 s
1 hr

)2
= 98 ¨ 64 km

h2 = 25 ¨ 34 ¨ 72 km
h2 .

r(t) = (ln t, 1´ t)

r1(t) = v(t) = (t´1,´1)
ds
dt

= |v(t)| =
a

1 + t´2

r2(t) = a(t) = (´t´2, 0)

κ(t) =
|vˆ a|
(

ds
dt

)3 =
t´2

?
1 + t´23 =

|t|
(1 + t2)3/2 =

t
(1 + t2)3/2

Note t is positive in the interval in question.

T̂(t) =
v(t)
|v(t)| =

1?
1 + t´2

(t´1,´1) =
(

1?
1 + t2

,
´t?

1 + t2

)

T̂1(t) =
( ´t
(1 + t2)3/2 ,

´1
(1 + t2)3/2

)
|T̂1(t)| = 1

t2 + 1

N̂(t) =
T̂1(t)
|T̂1(t)| =

( ´t?
1 + t2

,
´1?
1 + t2

)

|N̂ ¨ ̂| = 1?
1 + t2

Now, we have all the pieces we need to find the “escape velocity” of the ground.

|v| =
c

g
κ
|N̂ ¨ ̂| =

d

g ¨ (1 + t2)3/2

t(1 + t2)1/2 =

c

g(1 + t2)

t

Since the skier can take off anywhere on the hill, we just need their velocity to be larger

than the smallest value of
b

g(1+t2)
t when 1/e ď t ď e. To find that minimum, we find the

location of the minimum of the simpler function g(t) = 1+t2

t . Using first-semester

calculus, we find it to occur when t = 1. So, the minimum value of
b

g(1+t2)
t (that is,

smallest speed to achieve lift-off) occurs at t = 1. We therefore need a minimum speed
greater than:

d

g(1 + t2)

|t|

ˇ

ˇ

ˇ

ˇ

ˇ

t=1

=
a

2g =
a

26 ¨ 34 ¨ 72 = 23 ¨ 32 ¨ 7 = 504 kph

(It seems unlikely that one could reach this speed on skis. The skier is probably
earth-bound until they find a curvier hill.)
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S-10: We now have three forces acting on the bead, rather than the two in the text. The
wire still exerts a normal force WN̂ on the bead to keep it on the wire; gravity still exerts
a force ´mĝ straight down. Now our jet-pack force also exerts a force parallel to the
direction of the bead’s motion, i.e. parallel to T̂. This force is UT̂.

WN̂

UT̂

´mĝ

The net force acting on the bead is the sum of these three forces:

F = ma = UT̂ + WN̂´mĝ

To focus on the force in the direction of T̂, we dot both sides of the equation with
T̂(s) =

(
dx
ds , dy

ds

)
. (Recall r(s) was parametrized with respect to arclength, so T̂(s) = dr

ds
everywhere.) Since the speed of the bead is constant, the tangential component of its
acceleration, a ¨ T̂, is 0 (see Theorem 1.3.3.c).

0 = (UT̂ + WN̂´mĝ) ¨ T̂
= (UT̂ ¨ T̂) + (WN̂ ¨ T̂)´mĝ ¨ T̂
= U + 0´mg

dy
ds

U = mg
dy
ds

S-11: (a) There are three forces acting on the snowmachine. If it’s not accelerating, then
F = ma = 0: that is, the forces all cancel out.

´mĝ

WN̂

MT̂

So, we have the equation

ma = WN̂ + MT̂´mĝ
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To isolate M, we dot both sides of the equation with T̂. Remember T̂ is a unit vector, and
it is perpendicular to N̂.

ma ¨ T̂ = WN̂ ¨ T̂ + MT̂ ¨ T̂´mĝ ¨ T̂
= 0 + M´mĝ ¨ T̂

Since the speed of the snowmachine is constant, the tangential component of its
acceleration, a ¨ T̂, is 0 (see Theorem 1.3.3.c).

0 = M´mĝ ¨ T̂
M = mĝ ¨ T̂

(b) We would expect, from looking at the situation, that the engine would have to
provide a “backwards” force to slow the acceleration due to gravity. So, we would expect
M ă 0. Indeed, if T̂ points downhill, then the y-component of T̂ is negative, so
M = mĝ ¨ T̂ is negative.

(This is the purpose of driving downhill in a low gear: the friction inside the motor
provides a force opposing the direction of motion, slowing the vehicle.)

(c) To use the equation M = mĝ ¨ T̂, we’ll need to find ̂ ¨ T̂.

r(x) = (x, 1 + cos x) r1(x) = (1,´ sin x)

|r1(x)| =
a

1 + sin2 x T̂(x) =
1

a

1 + sin2 x
(1,´ sin x)

T̂(3π/4) =

(
c

2
3

,´ 1?
3

)

So,

M = (200 kg)(9.8 m/s2)

(
´ 1?

3
m
)
= ´1960?

3
N « ´1131.6 N

S-12: We begin with the usual computations.

r(θ) = (4 cos θ, 3(1 + sin θ))

v(θ) = r1(θ) = (´4 sin θ, 3 cos θ) |v(θ)| = ds
dθ

=
a

16 sin2 θ + 9 cos2 θ =
a

9 + 7 sin2 θ

a(θ) = (´4 cos θ,´3 sin θ)

|v(θ)ˆ a(θ)| = 12 κ(θ) =
|v(θ)ˆ a(θ)|
(

ds
dθ

)3 =
12

(9 + 7 sin2 θ)3/2

T̂(θ) =
(´4 sin θ, 3 cos θ)
a

9 + 7 sin2 θ
T̂1(θ) =

(36 cos θ, 48 sin θ)

´(9 cos2 θ + 16 sin2 θ)3/2

|T̂1(θ)| = 12
9 cos2 θ + 16 sin2 θ

N̂(θ) =
(3 cos θ, 4 sin θ)

´
a

9 cos2 θ + 16 sin2 θ
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We want to find the height yS where |v| = 0, and the height yA where W = 0. Remember
that v in these equations is the derivative of position with respect to time, and is not the
same as v(θ).

Equation 1.7.1: E =
1
2

m|v|2 + mgy

If |v| = 0: E = mgyS ùñ yS =
E

mg

This answers part a.

Equation 1.7.2: W = 2κ(E´mgy) + mĝ ¨ N̂
If W = 0: 0 = 2κ(E´mgyA) + mĝ ¨ N̂

=
24 (E´mgyA)

(9 + 7 sin2 θ)3/2
´mg

(
4

sin θ
a

9 + 7 sin2 θ

)

Using y = 3 + 3 sin θ:

=
24 (E´mgyA)(

9 + 7
(

yA´3
3

)2
)3/2 ´ 4mg




yA´3
3

c

9 + 7
(

yA´3
3

)2




So, for part b., we can write (say)

24 (E´mgyA)(
9 + 7

(
yA´3

3

)2
)3/2 = 4mg




yA´3
3

c

9 + 7
(

yA´3
3

)2




Now, suppose the skater’s speed at the bottom of the culvert (y = 0) is 11 m/s. Then
their energy is E = 1

2 m(112) + 0, or 121m
2 joules, where m is their mass. Then

yS = E
mg = 121

2¨9.8 « 6.2. Since the half-way height of the culvert is at height y = 3, the
skater makes it onto the ceiling of the culvert. Now the question is: did they make it all
around, or fall off the ceiling?

For this, we need to find yA. If they go airborne on the ceiling, they fall; but if yA ą 6,
then they never lose contact with the culvert, and they go all the way around.
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24 (E´mgyA)(
9 + 7

(
yA´3

3

)2
)3/2 = 4mg




yA´3
3

c

9 + 7
(

yA´3
3

)2




ô
6
(

E
mg ´ yA

)

(
9 + 7

(
yA´3

3

)2
)3/2 =

yA´3
3

c

9 + 7
(

yA´3
3

)2

ô
6
(

112

2¨9.8 ´ yA

)

(
9 + 7

(
yA´3

3

)2
)3/2 =

yA´3
3

c

9 + 7
(

yA´3
3

)2

To simplify to a more standard form, we multiply both sides by
(

9 + 7
(

yA´3
3

)2
)3/2

:

6
(

112

2 ¨ 9.8
´ yA

)
=

(
yA ´ 3

3

)(
9 + 7

(
yA ´ 3

3

)2
)

Now, we simplify to

0 =
7
9

y3
A ´ 7y2

A + 48yA ´ 7797
49

Now, solving for yA involves solving a cubic function, which is no small task. We could
ask a computer, but we can also get an idea of its root(s) by plugging in numbers and
using the intermediate value theorem. In particular, we need to know whether yA is
greater than 6 (the skater makes it!) or between 3 and 6 (they fall off the ceiling).

Let f (y) = 7
9 y3 ´ 7y2 + 48y´ 7797

49 . Note f (4) = ´12941
441 , which is negative, and

f (5) = 1367
441 , which is positive. So, by the intermediate value theorem, there is a root of

f (y) between y = 4 and y = 5. That is, yA is between 4 and 5, so the skater falls off the
ceiling somewhere between these heights, rather than making it all the way around.

S-13: (a) By Newton’s law of motion

E1(t) =
d
dt

[
1
2

m|v(t)|2 + mgr(t) ¨ k̂
]
= mv(t) ¨ v1(t) + mgv(t) ¨ k̂

= v(t) ¨ [N(r(t))´mgk̂
]
+ mgv(t) ¨ k̂

= 0

since v(t) ¨N(r(t)) = 0. So E(t) is a constant, independent of t.

(b) By part (a),

E(t) = E(0) ùñ 1
2 m|v(t)|2 + mgbθ(t) = mg(2πb) ùñ |v(t)|2 = 2gb

(
2π ´ θ(t)

)
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(c) We wish to determine the time it takes to go from θ = 2π to θ = 0. We’ll first
determine dθ

dt .

v =
dr
dt

=
dr
dθ

dθ

dt
=
(´ a sin θ, a cos θ, b

)dθ

dt

ùñ |v|2 =
[
a2 + b2]

(
dθ

dt

)2

ùñ dθ

dt
= ´

[ |v|2
a2 + b2

]1/2

= ´
[

2gb(2π ´ θ)

a2 + b2

]1/2

We have chosen the negative sign because θ must decrease from 2π to 0. The time
required to do so is

ż

dt =
ż 0

2π

dt
dθ

dθ = ´
[

a2 + b2

2gb

]1/2 ż 0

2π

1
(2π ´ θ)1/2 dθ

=

[
a2 + b2

2gb

]1/2 ż 2π

0

1
(2π ´ θ)1/2 dθ

=

[
a2 + b2

2gb

]1/2 [
´2(2π ´ θ)1/2

]2π

0
= 2

[
a2 + b2

gb
π

]1/2

Solutions to Exercises 1.8 — Jump to TABLE OF CONTENTS

S-1: The left hand sketch below contains the points, (x1, y1), (x3, y3), (x5, y5), that are on
the axes. The right hand sketch below contains the points, (x2, y2), (x4, y4), that are not
on the axes.

x

y

π
2π (3, 0)

(0, 1)

(−2, 0)

x

y
(1, 1)

√
2

(−1, 1)

π
4

3π
4

Recall that the polar coordinates r, θ are related to the cartesian coordinates x, y, by
x = r cos θ, y = r sin θ. So r =

a

x2 + y2 and tan θ = y
x (assuming that x ‰ 0) and

(x1, y1) = (3, 0) ùñ r1 = 3, tan θ1 = 0 ùñ θ1 = 0 as (x1, y1) is on the positive x-axis

(x2, y2) = (1, 1) ùñ r2 =
?

2, tan θ2 = 1 ùñ θ2 =
π

4
as (x2, y2) is in the first octant

(x3, y3) = (0, 1) ùñ r3 = 1, cos θ3 = 0 ùñ θ3 =
π

2
as (x3, y3) is on the positive y-axis

(x4, y4) = (´1, 1) ùñ r4 =
?

2, tan θ4 = ´1 ùñ θ4 =
3π

4
as (x4, y4) is in the third octant

(x5, y5) = (´2, 0) ùñ r5 = 2, tan θ5 = 0 ùñ θ5 = π as (x5, y5) is on the negative x-axis
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S-2: Note that the distance from the point
(
r cos θ , r sin θ

)
to the origin is

a

r2 cos2 θ + r2 sin2 θ =
?

r2 = |r|
Thus r can be either the distance to the origin or minus the distance to the origin.

(a) The distance from (´2, 0) to the origin is 2. So either r = 2 or r = ´2.

• If r = 2, then θ must obey

(´2, 0) =
(
2 cos θ , 2 sin θ

) ðñ sin θ = 0, cos θ = ´1

ðñ θ = nπ, n integer , cos θ = ´1
ðñ θ = nπ, n odd integer

• If r = ´2, then θ must obey

(´2, 0) =
(´ 2 cos θ , ´2 sin θ

) ðñ sin θ = 0, cos θ = 1

ðñ θ = nπ, n integer , cos θ = 1
ðñ θ = nπ, n even integer

In the figure on the left below, the blue half-line is the set of all points with polar
coordinates θ = π, r ą 0 and the pink half-line is the set of all points with polar
coordinates θ = π, r ă 0. In the figure on the right below, the blue half-line is the set of
all points with polar coordinates θ = 0, r ą 0 and the pink half-line is the set of all points
with polar coordinates θ = 0, r ă 0.

x

y

π(−2, 0)
x

y

(−2, 0)

(b) The distance from (1, 1) to the origin is
?

2. So either r =
?

2 or r = ´?2.

• If r =
?

2, then θ must obey

(1, 1) =
(?

2 cos θ ,
?

2 sin θ
) ðñ sin θ = cos θ = 1/

?
2

ðñ θ = π/4 + 2nπ, n integer

• If r = ´?2, then θ must obey

(1, 1) =
(´

?
2 cos θ , ´

?
2 sin θ

) ðñ sin θ = cos θ = ´1/
?

2

ðñ θ = 5π/4 + 2nπ, n integer

In the figure on the left below, the blue half-line is the set of all points with polar
coordinates θ = π

4 , r ą 0 and the pink half-line is the set of all points with polar
coordinates θ = π

4 , r ă 0. In the figure on the right below, the blue half-line is the set of
all points with polar coordinates θ = 5π

4 , r ą 0 and the pink half-line is the set of all
points with polar coordinates θ = 5π

4 , r ă 0.
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x

y

(1, 1)√
2
π
4

x

y

(1, 1)√
2

5π
4

(c) The distance from (´1,´1) to the origin is
?

2. So either r =
?

2 or r = ´?2.

• If r =
?

2, then θ must obey

(´1,´1) =
(?

2 cos θ ,
?

2 sin θ
) ðñ sin θ = cos θ = ´1/

?
2

ðñ θ = 5π/4 + 2nπ, n integer

• If r = ´?2, then θ must obey

(´1,´1) =
(´

?
2 cos θ , ´

?
2 sin θ

) ðñ sin θ = cos θ = 1/
?

2

ðñ θ = π/4 + 2nπ, n integer

In the figure on the left below, the blue half-line is the set of all points with polar
coordinates θ = 5π

4 , r ą 0 and the pink half-line is the set of all points with polar
coordinates θ = 5π

4 , r ă 0. In the figure on the right below, the blue half-line is the set of
all points with polar coordinates θ = π

4 , r ą 0 and the pink half-line is the set of all points
with polar coordinates θ = π

4 , r ă 0.

x

y

√
2

(−1,−1)

5π
4

x

y

√
2

(−1,−1)

π
4

S-3: (a) The lengths are

|êr(θ)| =
a

cos2 θ + sin2 θ = 1

|êθ(θ)| =
b

(´ sin θ)2 + cos2 θ = 1

As
êr(θ) ¨ êθ(θ) = (cos θ)(´ sin θ) + (sin θ)(cos θ) = 0

the two vectors are perpendicular and the angle between them is π
2 . The cross product is

êr(θ)ˆ êθ(θ) = det




ı̂ıı ̂ k̂
cos θ sin θ 0
´ sin θ cos θ 0


 = k̂
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(b) Note that for θ determined by x = r cos θ, y = r sin θ,

• the vector êr(θ) is a unit vector in the same direction as the vector from (0, 0) to
(x, y) and

• the vector êθ(θ) is a unit vector that is perpendicular to êr(θ).
• The y-component of êθ(θ) has the same sign as the x-component of êr(θ). The

x-component of êθ(θ) has opposite sign to that of the y-component of êr(θ).

Here is a sketch of (xi, yi), êr(θi), êθ(θi) for i = 1, 3, 5 (the points on the axes)

x

y

(3, 0)

(0, 1)

(−2, 0) er(0)

eθ(0)

er(
π
2
)

eθ(
π
2
)

er(π)

eθ(π)

and here is a sketch (to a different scale) of (xi, yi), êr(θi), êθ(θi) for i = 2, 4 (the points off
the axes).

x

y

(1, 1)(−1, 1)

er(
π
4
)eθ(

π
4
)er(

3π
4
)

eθ(
3π
4
) π

4

3π
4

S-4: (a) Since ´1 ď sin(4θ) ď 1, the coordinate r = 2 + sin(4θ) oscillates between r = 1
and r = 3 as θ runs from 0 to 2π. The maximum value r = 3 is achieved when
sin(4θ) = 1, i.e when 4θ = π

2 + 2nπ, i.e. when θ = π
8 + nπ

2 . That matches figure (E).

(b) Since ´1 ď sin(4θ) ď 1, the coordinate r = 1 + 2 sin(4θ) takes its maximum value
r = 3 when sin(4θ) = 1, i.e. when θ = π

8 + nπ
2 , just as the case with (a). But now r can

also take the value 0. That matches figure (B).

(c) r = 1 is completely indepedent of θ. All points on the curve r = 1 are a distance 1 from
the origin. That is, r = 1 is the circle of radius 1 centred on the origin. That’s figure (F).

(d) In this case, θ is subject to the restriction ´π
2 ď θ ď π

2 , like figure (C). Figure (C) looks
like a circle. We can verify that r = 2 cos(θ) is indeed a circle by converting to Cartesian
coordinates. We can convert the right hand side to exactly 2x = 2r cos(θ) by multiplying
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the whole equation by r.

r = 2 cos(θ) ðñ r2 = 2r cos(θ) ðñ x2 + y2 = 2x

ðñ (x´ 1)2 + y2 = 1

So r = 2 cos(θ) is the circle of radius 1 centred on x = 1, y = 0, which indeed matches
figure (C).

(e) When θ = 0, r = eθ/10 + e´θ/10 = 2. As

d
dθ

(
eθ/10 + e´θ/10) = 1

10
(
eθ/10 ´ e´θ/10) ą 0 for all θ ą 0

r = eθ/10 + e´θ/10 increases as θ increases for all θ ě 0. Furthermore the rate of increase
gets bigger and bigger as θ gets bigger and bigger. So r starts at r = 2 when θ = 0 and
increases faster and faster as θ increases. That matches figure (A).

(f) When θ = 0, r = θ = 0. As
d
dθ

θ = 1 for all θ

r = θ increases as θ increases for all θ ě 0. Furthermore the rate of increase is
independent of θ. So r starts at r = 0 when θ = 0 and increases at a constant rate as θ
increases. That matches figure (D).

S-5: Think of θ as a time parameter and recall that κ(θ) = |v(θ)ˆa(θ)|
|v(θ)|3 . The given curve has

x(θ) = f (θ) cos θ

y(θ) = f (θ) sin θ

r(θ) = f (θ)
[

cos θ ı̂ıı + sin θ ̂
]

v(θ) = r1(θ) = f 1(θ)
[

cos θ ı̂ıı + sin θ ̂
]
+ f (θ)

[´ sin θ ı̂ıı + cos θ ̂
]

a(θ) = r2(θ) =
 

f 2(θ)´ f (θ)
([

cos θ ı̂ıı + sin θ ̂
]
+ 2 f 1(θ)

[´ sin θ ı̂ıı + cos θ ̂
]

The efficient way to compute |v(θ)| and the cross product v(θ)ˆ a(θ) is to observe that

v(θ) = f 1(θ) êr(θ) + f (θ) êθ(θ)

a(θ) =
 

f 2(θ)´ f (θ)
(

êr(θ) + 2 f 1(θ) êθ(θ)

where êr(θ) and êθ(θ) are the vectors of Q[3]. As êr(θ) and êθ(θ) are mutually
perpendicular unit vectors obeying êr(θ)ˆ êθ(θ) = k̂ and
êr(θ)ˆ êr(θ) = êθ(θ)ˆ êθ(θ) = 0,

|v(θ)|2 = v(θ) ¨ v(θ) = [ f 1(θ) êr(θ) + f (θ) êθ(θ)
] ¨ [ f 1(θ) êr(θ) + f (θ) êθ(θ)

]

= f 1(θ)2 êr(θ) ¨ êr(θ) + f (θ)2 êθ(θ) ¨ êθ(θ) + 2 f 1(θ) f (θ) êr(θ) ¨ êθ(θ)

= f 1(θ)2 + f (θ)2

|v(θ)| =
b

f 1(θ)2 + f (θ)2

v(θ)ˆ a(θ) =
[

f 1(θ) êr(θ) + f (θ) êθ(θ)
]ˆ [ f 2(θ)´ f (θ)

(

êr(θ) + 2 f 1(θ) êθ(θ)
]

= 2 f 1(θ)2 êr(θ)ˆ êθ(θ) + f (θ)[ f 2(θ)´ f (θ)] êθ(θ)ˆ êr(θ)

=
 

2 f 1(θ)2 ´ f (θ)[ f 2(θ)´ f (θ)]
(

k̂
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So

κ(θ) =
|v(θ)ˆ a(θ)|
|v(θ)|3 =

ˇ

ˇ f (θ)2 + 2 f 1(θ)2 ´ f (θ) f 2(θ)
ˇ

ˇ

[ f (θ)2 + f 1(θ)2]3/2

S-6: By the Q[5] with

f (θ) = a(1´ cos θ) f 1(θ) = a sin θ f 2(θ) = a cos θ

we have

κ(θ) =

ˇ

ˇ f (θ)2 + 2 f 1(θ)2 ´ f (θ) f 2(θ)
ˇ

ˇ

[ f (θ)2 + f 1(θ)2]3/2

=

ˇ

ˇa2 ´ 2a2 cos θ + a2 cos2 θ + 2a2 sin2 θ ´ a2 cos θ + a2 cos2 θ
ˇ

ˇ

[a2 ´ 2a2 cos θ + a2 cos2 θ + a2 sin2 θ]3/2

=
3a2 ´ 3a2 cos θ

[2a2 ´ 2a2 cos θ]3/2 =
3

23/2a
?

1´ cos θ
=

3
2
a

2ar(θ)

Solutions to Exercises 2.1 — Jump to TABLE OF CONTENTS

S-1: The vectors are pointing to the right when x ą 0, to the left when x ă 0, and are
vertical when x = 0. So, at least for (x, y) shown in the sketch,

v(x, y) ¨ ı̂ıı

$

’

&

’

%

ą 0 when x ą 0
= 0 when x = 0
ă 0 when x ă 0

The behaviour of the y-values is more complicated. Vectors in one vertical line seem to be
all pointing up, or all pointing down. So, the sign of v ¨ ̂ depends only on x, not on y
(although the magnitude of v ¨ ̂ depends on both). Roughly, the vectors are pointing

• Down when x ă ´2;

• horizontally when x = ´2 (remember the vector is positioned with the base of
v(x, y) at (x, y);

• up when ´2 ă x ă 2;

• horizontally when x = 2;

• up when 2 ă x.

Since we’re assuming there’s nothing surprising happening between the samples
pictured, at least for (x, y) shown in the sketch,

v(x, y) ¨ ̂

$

’

&

’

%

ą 0 when ´2 ă x ă 2
= 0 when x P t´2, 2u
ă 0 when x ă ´2 or x ą 2
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S-2: To start out, we find the places where v(x, y) ¨ ı̂ıı = 0 (vertical vectors) or v(x, y) ¨ ̂ = 0
(horizontal vectors). Remember the vector v(x, y) has its tail at (x, y).

We see the vertical vectors (those with v(x, y) ¨ ı̂ıı = 0) occur at every point along the line
y = ´x, while horizontal vectors (those with v(x, y) ¨ ̂ = 0) occur at every point along
the line y = x.

Indeed, below the line y = ´x, vectors point to the left, while above the line y = ´x they
point to the right. Similarly, vectors point down when they’re above the line y = x, and
the point up when they’re below the line y = x.

LEFT

RIGHT

x

y

UP

DOWN

x

y

So, at least for (x, y) shown in the sketch,

v(x, y) ¨ ı̂ıı

$

’

’

&

’

’

%

ą 0 when y ą ´x

= 0 when y = ´x

ă 0 when y ă ´x
and v(x, y) ¨ ̂

$

’

’

&

’

’

%

ą 0 when y ă x

= 0 when y = x

ă 0 when y ą x

S-3:

Since all conveyors point towards the origin, the direction of motion of an object at
location (x, y) is (´x,´y)?

x2+y2 . Its magnitude is y, so v(x, y) = ´y?
x2+y2 (x, y).

S-4: The arrows near the point A are pointing to the right, indicating that P ą 0, and
upward, indicating that Q ą 0. Moving from left to right near A, the vertical component
of the arrows is decreasing, indicating that BQ

Bx ă 0. Moving vertically upwards near A,
the vertical component of the arrows is increasing, indicating that BQ

By ą 0.
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S-5: (a) At time 0 the velocity of the twig is v(1, 1) = ı̂ıı + ̂. So at time t = 0.1, the position
of the twig is approximately

(1, 1) + 0.01(1, 1) = (1.01 , 1.01)

(b) At time 0 the velocity of the twig is v(0, 0) = 0. So at time t = 0.1, the position of the
twig is

(0, 0) + 0.1(0, 0) = (0 , 0)

(c) At time 0 the velocity of the twig is v(0, 0) = 0. So it is stationary and its velocity
remains zero for all time. The position of the twig at time 10, and in fact at all times, is
(0 , 0).

S-6: The velocity of the fluid at all points of the y-axis is ´̂. So the twig will remain on
the y-axis and will consequently have velocity ´̂ for all time. The position of the twig at
time 10 will be

(0, 0) + 10(0,´1) = (0 , ´10)

S-7:

Since all conveyors point towards the origin, the direction of motion of an object at
location (x, y) is (´x,´y)?

x2+y2 . Its magnitude is y, so v(x, y) = ´y?
x2+y2 (x, y).

S-8: Set your face to be at the origin of our coordinate system, (0, 0, 0). A bee at position
(x, y, z) is a distance of

a

x2 + y2 + z2 from your face, heading in the direction
(´x,´y,´z). So, the unit vector indicating the direction of one friendly bee is

´1?
x2+y2+z2 (x, y, z). Now all we need to find is the length of this vector, i.e. the speed of

the friendly bee.

The speed of the friendly bee is inversely proportional to
a

x2 + y2 + z2, its distance from
your face. (Bees that are farther away are buzzing towards you more excitedly.) So,
speed is given by α?

x2+y2+z2 for some constant α.

The bee velocity has the direction of the unit vector ´1?
x2+y2+z2 (x, y, z) with length

α?
x2+y2+z2 for some positive constant α. That is,

v(x, y, z) = ´ α

x2 + y2 + z2 (x, y, z)

S-9: Beginning as in the text, we note

v(x, y) ¨ ı̂ıı = x2

#

ą 0 x ‰ 0
= 0 x = 0

and v(x, y) ¨ ̂ = y

$

’

&

’

%

ą 0 y ą 0
= 0 y = 0
ă 0 y ă 0

.
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That leads to the following picture:

x

y

This gives us a general idea to start with. Refining, we notice that when x2 ą |y|, then the
vector v(x, y) will be more horizontal than vertical. As we move away from the y-axis in
a horizontal line, the difference between x2 and |y| grows, so the vectors get more and
more horizontal. However, for a fixed value of x, vectors farther from the axis will be
more vertical than vectors closer to it.

x

y

S-10:

Although ultimately we’ll sketch only unit-length vectors, we can still find the direction
of v(x, y) by finding its x- and y components.

Note v(x, y) ¨ ı̂ıı is the distance from (x, y) to the origin, while v(x, y) ¨ ̂ is the distance
from (x, y) to the point (1, 1). Both these numbers are always nonnegative. This leads to
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the following sketch:

x

y

When (x, y) is far from the origin, its distance from (0, 0) is almost the same as its
distance from (1, 0). So, we expect v(x, y) to be approximately a scalar multiple of (1, 1).

At (0, 0), v(0, 0) ¨ ı̂ıı = 0, so our vector is horizontal; similarly, v(1, 1) ¨ ̂ = 0 so this vector is
horizontal. Vectors very near to (0, 0) are nearly horizontal, while vectors near to (1, 1)
are nearly vertical.

x

y

For the direction field, we normalize our vectors to have unit length.
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x

y

S-11: The sign of v(x, y) ¨ ı̂ıı = x(x + y) depends on the signs of x and x + y. When they
have the same signs, v(x, y) ¨ ı̂ıı is positive, so v(x, y) points to the right; when they have
different signs, v(x, y) points to the left.

y

y = ´x

Similarly, the sign of v(x, y) ¨ ̂ = y(y´ x) depends on the signs of y and y´ x.
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x

y = x

All together:

x

y
y = x

y = ´x

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

Ð

Ð

ÒÒ

Ò

Ò Ò

Ò
Ó

Ó

Refining, we notice that as we move straight up or down, |v(x, y) ¨ ı̂ıı| has its minimum
along the lines y = ´x and x = 0. So, the vectors become more strongly vertical as we
approach y = ´x and x = 0 from above or below.

Similarly, |v(x, y) ¨ ̂| has its minima along the lines y = x and y = 0, so the vectors
become more strongly horizontal as we approach y = x horizontally.

221



x

y

S-12:

The field v(x, y) is the sum, scaled by 1/3, of the unit vector pointing away from the
origin and the unit vector pointing away from (1, 0). This tells us about a few regions:

• Along the x axis between (0, 0) and (1, 0), the vectors away from these points are
pointing in opposite directions (and have the same length), so they cancel each
other out. That is, v(x, 0) = 0 for all x P (0, 1).

• v(0, 0) and v(1, 0) are not defined.

• Along the x-axis outside of [0, 1], the vector pointing away from the point (0, 0) is
the same as the vector pointing away from the point (1, 0). So, v(x, 0) = (´2/3, 0)
for x ă 0 and v(x, 0) = (2/3, 0) for x ą 1.

x

y

• As the distance from (x, y) to the origin grows, the vector pointing away from (0, 0)
looks more and more like the vector pointing away from (1, 0). So, our vectors far
away from the origin look like vectors of length about 2/3, pointing away from the
origin.
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x

y

S-13: (a) The vector field v(x, y) = x ı̂ıı + y ̂ is the same as the radius vector. It points
radially outward and has length growing linearly with the distance from the origin.

x

y

(b) The vertical component of v(x, y) = 2x ı̂ıı´ ̂ is always ´1. Its horizontal component is
2x, so that

• v(x, y) is rightward pointing when x ą 0 and leftward pointing when x ă 0, and
• the magnitude of the horizontal component grows linearly with the distance from

the y-axis.

It is sketched in the figure on the left below.
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x

y

x

y

(c) For every (x, y) the vector v(x, y) = y ı̂ıı´x ̂?
x2+y2

• is of length 1 and
• is perpendicular to the radius vector x ı̂ıı + y ̂.
• v(x, y) is rightward pointing when y ą 0 and leftward pointing when y ă 0, and
• v(x, y) is downward pointing when x ą 0 and upward pointing when x ă 0.

It is sketched in the figure on the right above.

S-14: A particle of unit mass at position (x, y) has distance D1 =
a

x2 + y2 from the 5kg
mass, so that mass exerts a force of magnitude G(5)

x2+y2 on the particle. This force has

direction (´x,´y). So, the force exerted by the 5kg mass is f1(x, y) = ´5G
(x2+y2)3/2 (x, y).

Similarly, the 3 kg mass at (2, 3) exerts a force of f2(x, y) = 3G
((x´2)2+(y´3)2)3/2 (2´ x, 3´ y);

and the 7 kg mass at (4, 0) exerts a force of f3(x, y) = 7G
((x´4)2+y2)3/2 (4´ x,´y).

The net force on a unit mass is therefore

f(x, y) = f1(x, y) + f2(x, y) + f3(x, y)

=
´5G(x, y)
(x2 + y2)3/2 +

3G(2´ x, 3´ y)
((x´ 2)2 + (y´ 3)2)3/2 +

7G(4´ x,´y)
((x´ 4)2 + y2)3/2

S-15:

a. Consider a point P on the pole that is a distance p away from the bottom end. Use this
point to make a smaller right triangle, as in the picture below.
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x

y

2

H

?
4´ H2

P p

b

h

Using similar triangles:

h =
p
2

H b =
p
2

a

4´ H2

If P is at position (x, y), then:

y = h =
p
2

H x =
a

4´ H2 ´ b =
(

1´ p
2

)
a

4´ H2

dy
dt

=
p
2

dH
dt

= ´ p
4

dx
dt

=
(

1´ p
2

) ´H?
4´ H2

dH
dt

=
(

1´ p
2

) H
2
?

4´ H2

When H = 1:

dy
dt

ˇ

ˇ

ˇ

ˇ

H=1
= ´ p

4
dx
dt

ˇ

ˇ

ˇ

ˇ

H=1
=
(

1´ p
2

) 1
2
?

3

Therefore,

v(p) =
(

dx
dt

,
dy
dt

)ˇ
ˇ

ˇ

ˇ

H=1
=

((
1´ p

2

) 1
2
?

3
, ´ p

4

)

For our model, we set the domain of this function to be [0, 2].

b. Let’s start by seeing what we can salvage from our work on part a. As in part a.,
consider a point P on one of the poles, p metres from the bottom end.

(0, 0, H) 2

a

x2 + y2

?
4´ H2

P = (x, y, z)
p
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Let P have position (x, y, z). Noting that dH
dt is now positive, not negative, if we stick

to this two-dimensional slice,

V(p) =
((

1´ p
2

) ´1
2
?

3
,

p
4

)

where the second coordinate is z and the first coordinate refers to the (horizontal) line
in the direction of the vector (x, y, 0).

z

(0, 0, H)

(0, 0, 0)

c ¨ (x, y, 0)

p

(x, y, z)

(x, y, 0)

So, we know
dz
dt

ˇ

ˇ

ˇ

ˇ

H=1
=

p
4

, and we know
(

dx
dt

,
dy
dt

)ˇ
ˇ

ˇ

ˇ

H=1
= (x, y)c for some negative

constant c with |(x, y)c| = (1´ p
2

) 1
2
?

3
. Since we have the direction and the magnitude

of the vector, we can find the vector:

(
dx
dt

,
dy
dt

)ˇ
ˇ

ˇ

ˇ

H=1
= (x, y)c = ´

(
1´ p

2

)

2
?

3
a

x2 + y2
(x, y)

We want our equation to be in terms of x, y, and z, so we need to get rid of p. Using

similar triangles, p
2 =

?
4´H2´

?
x2+y2?

4´H2
. When H = 1, then 1´ p

2 =
?

x2+y2
?

3
. So:

(
dx
dt

,
dy
dt

)ˇ
ˇ

ˇ

ˇ

H=1
= ´1

6
(x, y)

Finally:

V(x, y, z) =
(

dx
dt

,
dy
dt

,
dz
dt

)ˇ
ˇ

ˇ

ˇ

H=1
=

(
´1

6
x , ´ 1

6
y ,

1
2

z
)

Not all values of (x, y, z) are on the frame. But, for those values of (x, y, z) that are on
the frame, this equation holds.
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Solutions to Exercises 2.2 — Jump to TABLE OF CONTENTS

S-1: (a) At every point of the positive y-axis, the velocity vector v(0, y) points straight
down. So a rubber ducky placed in the water at (0, 2) just floats straight down the
positive y-axis towards the origin.

x

y

1

2

3

1 2 3

(b) At every point of the positive x-axis, the velocity vector v(x, 0) points straight to the
right. So a rubber ducky placed in the water at (1, 0) just floats rightward along the
positive x-axis.

(c) At every point of the first quadrant away from the axes, the velocity vector v(x, y)
points downwards and towards the right. So a rubber ducky placed in the water at (1, 2)
always floats down and to the right. The closer the ducky gets to the x–axis the more
rightward its motion becomes.

S-2: The derivatives

x1(t) = ´e´t cos t´ e´t sin t = ´x(t)´ y(t)

y1(t) = ´e´t sin t + e´t cos t = ´y(t) + x(t)

So
(
x(t), y(t)

)
is a solution of the system of differential equations

dx
dt

= v1(x, y) = ´x´ y

dy
dt

= v2(x, y) = x´ y

So the vector field is v(x, y) =
(
v1(x, y) , v2(x, y)

)
= (´x´ y , x´ y).
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S-3: (a) The field lines of F(x, y) =∇∇∇ f = y ı̂ıı + x ̂ obey

dx
y

=
dy
x
ðñ x dx = y dy ðñ x2

2
=

y2

2
+ C

for any constant C.

(b) The sign data

ı̂ıı ¨ F(x, y) = y

$

’

&

’

%

ą 0 if y ą 0
= 0 if y = 0
ă 0 if y ă 0

,

/

.

/

-

̂ ¨ F(x, y) = x

$

’

&

’

%

ą 0 if x ą 0
= 0 if x = 0
ă 0 if x ă 0

,

/

.

/

-

is visually displayed in the figure on the left below. The arrows in the figure on the left

gives us the direction of motion along the field lines x2

2 = y2

2 + C (in red) in the figure on
the right below. Some equipotential curves xy = C are also sketched (in blue) in the
figure on the right below.

x

y

S-4: The field lines obey
dx
2y

=
dy

x/y2 =
dz
ey if x, y ‰ 0

In particular

dx
2y

=
y2 dy

x
ùñ x dx = 2y3 dy ùñ 1

2
x2 =

1
2

y4 + C

Since y = 1 when x = 1, C = 0. So x = y2 and

dy
x/y2 =

dz
ey ùñ eydy = dz ùñ z = ey + D

Since z = e when y = 1, D = 0. So the field line is

x = y2 z = ey
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S-5: The field lines obey

dx
x

=
dy
3y

if x, y ‰ 0

ùñ 3 ln |x| = ln |y|+ C

ùñ |x|3 = eC|y|
ùñ y = ˘e´Cx3

ùñ y = C1x3

with C1 a nonzero constant. x = 0 and y = 0 are also field lines, since on the y-axis F ‖ ̂
and on the x-axis F ‖ ı̂ıı.

Solutions to Exercises 2.3 — Jump to TABLE OF CONTENTS

S-1: False, in general.

In the context of Equation 1.7.1, the only forces acting on the particle are gravity, ´mĝ,
and the normal force, WN̂.

We make no such constraints on the force in Example 2.3.3. Certainly F could arise from
gravity and the normal force of a track, but there’s nothing saying it has to. For example,
suppose ϕ is an equation that does not depend on m and/or g. Alternately, suppose the
y-coordinate of our three-dimensional system is not “up.”

S-2: Remember that the screening test can only rule out conservativity — it can never, by
itself, guarantee conservativity. So, A is never the case.

a.

F = xı̂ıı + ẑ + yk̂

∇∇∇ˆ F =
(BF3

By
´ BF2

Bz

)
ı̂ıı +
(BF1

Bz
´ BF3

Bx

)
̂ +
(BF2

Bx
´ BF1

By

)
k̂

= (1´ 1)ı̂ıı + (0´ 0)̂ + (0´ 0)k̂ = 0

This field passes the screening test. That means the screening test doesn’t rule out the
possibility of F being conservative. So, we have option C.
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b.

F = y2zı̂ıı + x2ẑ + x2yk̂

∇∇∇ˆ F =
(BF3

By
´ BF2

Bz

)
ı̂ıı +
(BF1

Bz
´ BF3

Bx

)
̂ +
(BF2

Bx
´ BF1

By

)
k̂

= (x2 ´ x2)ı̂ıı + (y2 ´ 2xy)̂ + (2xz´ 2yz)k̂ ‰ 0

So, F fails the screening test — it’s not conservative. That’s option B.

c.

F = (yexy + 1)ı̂ıı + (xexy + z)̂ +
(

1
z
+ y
)

k̂

∇∇∇ˆ F =
(BF3

By
´ BF2

Bz

)
ı̂ıı +
(BF1

Bz
´ BF3

Bx

)
̂ +
(BF2

Bx
´ BF1

By

)
k̂

= (1´ 1)ı̂ıı + (0´ 0)̂ + (exy(xy + 1)´ exy(xy + 1))k̂ = 0

F passes the screening test, so it may or may not be conservative. That is Option C.

d.

F = y cos(xy)ı̂ıı + x sin(xy)̂
BF2

Bx
= xy cos(xy) + sin(xy)

BF1

By
= ´xy sin(xy) + cos(xy)

BF2

Bx
‰ BF1

By

F fails the screening test, so it is not conservative. That is Option B.

S-3: Let ϕ be a potential for F. Define φ = ϕ + ax + by + cz. Then
∇∇∇φ =∇∇∇ϕ + (a, b, c) = F + (a, b, c). So, F + (a, b, c) is also conservative.

S-4:

a. If F + G is conservative for any particular F and G, then by definition, there exists a
potential ϕ with F + G =∇∇∇ϕ.

Since F is conservative, there also exists a potential ψ with F =∇∇∇ψ.

But now G = (F + G)´ F =∇∇∇ϕ´∇∇∇ψ =∇∇∇(ϕ´ ψ). That means the function (ϕ´ ψ)
is a potential for G. However, this is impossible: since G is non-conservative, no
function with this property exists.

So it is not possible that F + G is conservative. It must be non-conservative.

b. Counterexample: if F = ´G, then F + G = 0 =∇∇∇c for any constant c.

c. Since both fields are conservative, they both have potentials, say F =∇∇∇ϕ and
G =∇∇∇ψ. Then F + G =∇∇∇ϕ +∇∇∇ψ =∇∇∇(ϕ + ψ). That is, (ϕ + ψ) is a potential for
F + G, so F + G is conservative.
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S-5: Set ϕ(x, y) = arctan y
x (using the standard arctan that takes values between ´π

2 and
π
2 ). Note that ϕ(x, y) is well-defined, with all partial derivatives continuous, on D since
x ą 1 there. Then

Bϕ

Bx
(x, y) =

´ y
x2

1 +
( y

x
)2 = ´ y

x2 + y2

Bϕ

By
(x, y) =

1
x

1 +
( y

x
)2 =

x
x2 + y2

so that F =∇∇∇ϕ.

S-6: If ϕ is a potential for F, then:

• Bϕ
Bx = x + y, so ϕ = 1

2 x2 + xy + ψ1(y)

• Bϕ
By = x´ y, so ϕ = xy´ 1

2 y2 + ψ2(x)

So, for instance, ϕ = 1
2 x2 + xy´ 1

2 y2 is a potential for F.

S-7: If ϕ is a potential for F, then:

• Bϕ
Bx = 1

x ´ 1
y , so ϕ = ln |x| ´ x

y + ψ1(y)

• Bϕ
By = x

y2 , so ϕ = ´ x
y + ψ2(x)

So, for instance, ϕ = ln |x| ´ x
y is a potential for F.

S-8: None exists: BF2
Bz = 1

3 x3, while BF3
By = 1

3 x3 + 1, so F fails the screening test,
Theorem 2.3.9.

S-9: If ϕ is a potential for F, then:

• Bϕ
Bx = x

x2+y2+z2 , so ϕ = 1
2 ln(x2 + y2 + z2) + ψ1(y, z)

• Bϕ
By = y

x2+y2+z2 , so ϕ = 1
2 ln(x2 + y2 + z2) + ψ2(x, z)

• Bϕ
Bz = z

x2+y2+z2 , so ϕ = 1
2 ln(x2 + y2 + z2) + ψ2(x, y)

So, for instance, ϕ = 1
2 ln(x2 + y2 + z2) is a potential for F.

S-10: (a) We shall show that F(x, y, z) is conservative by finding a potential for it.
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ϕ(x, y, z) is a potential for this F if and only if

Bϕ

Bx
(x, y, z) = x

Bϕ

By
(x, y, z) = ´2y

Bϕ

Bz
(x, y, z) = 3z

Integrating the first of these equations gives

ϕ(x, y, z) =
x2

2
+ f (y, z)

Substituting this into the second equation gives

B f
By

(y, z) = ´2y

which integrates to
f (y, z) = ´y2 + g(z)

Finally, substituting ϕ(x, y, z) = x2

2 ´ y2 + g(z) into the last equation gives

g1(z) = 3z

which integrates to

g(z) =
3
2

z2 + C

with C being an arbitrary constant. So, F(x, y, z) is conservative and
ϕ(x, y, z) = 1

2 x2 ´ y2 + 3
2 z2 is one allowed potential.

(b) The field F = F1 ı̂ıı + F2 ̂ can be conservative only if it passes the screening test

BF1

By
=
BF2

Bx

In this case BF1

By
=
B
By

( x
x2 + y2

)
= ´ 2xy

(x2 + y2)

is different from BF2

Bx
=
B
Bx

( ´y
x2 + y2

)
=

2xy
(x2 + y2)

for all (x, y) with x and y both nozero. So F is not conservative.

S-11: By Theorem 2.4.7 in the CLP-4 text, the field F = F1 ı̂ıı + F2 ̂ + F3 k̂ is conservative
only if it passes the screening test∇∇∇ˆ F = 0. That is, if and only if

BF1

By
=
BF2

Bx
BF1

Bz
=
BF3

Bx
BF2

Bz
=
BF3

By
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or,

B
By
(
e(z

2)
)
=
B
Bx
(
2Byz3) ðñ 0 = 0

B
Bz
(
e(z

2)
)
=
B
Bx
(

Axze(z
2) + 3By2z2) ðñ 2ze(z

2) = Aze(z
2)

B
Bz
(
2Byz3) = B

By
(

Axze(z
2) + 3By2z2) ðñ 6Bye(z

2) = 6Bye(z
2)

Hence only A = 2 works. We shall see in part (b) that any B works.

(b) When A = 2, and B is any real number.

F = e(z
2) ı̂ıı + 2Byz3 ̂ +

(
2xze(z

2) + 3By2z2) k̂

ϕ(x, y, z) is a potential for this F if and only if

Bϕ

Bx
(x, y, z) = e(z

2)

Bϕ

By
(x, y, z) = 2Byz3

Bϕ

Bz
(x, y, z) = 2xze(z

2) + 3By2z2

Integrating the first of these equations gives

ϕ(x, y, z) = xe(z
2) + f (y, z)

Substituting this into the second equation gives

B f
By

(y, z) = 2Byz3

which integrates to
f (y, z) = By2z3 + g(z)

Finally, substituting ϕ(x, y, z) = xe(z
2) + By2z3 + g(z) into the last equation gives

2xze(z
2) + 3By2z2 + g1(z) = 2xze(z

2) + 3By2z2 or g1(z) = 0

which integrates to
g(z) = C

with C being an arbitrary constant. So, for each real number B, ϕ(x, y, z) = xe(z
2) + By2z3

is one allowed potential.

S-12: In each second 2πm cm2 of fluid crosses each circle of radius r (and hence
circumference 2πr) centred on the origin. So the speed of flow at radius r is m

r . As the
direction of flow is radially outward

v = m
xı̂ıı + ŷ

x2 + y2
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ϕ(x, y) is a potential for this F if and only if

Bϕ

Bx
(x, y) = m

x
x2 + y2

Bϕ

By
(x, y) = m

y
x2 + y2

Integrating the first of these equations gives

ϕ(x, y) = 1
2 m ln(x2 + y2) + f (y)

Substituting this into the second equation gives

m
y

x2 + y2 + f 1(y) = m
y

x2 + y2 or f 1(y) = 0

which integrates to
f (y) = C

with C an arbitrary constant. So one possible potential is

ϕ = 1
2 m ln(x2 + y2)

S-13:

Following Example 2.3.3, the particle can never escape the region
t(x, y, z) : ϕ(x, y, z) ě ´Eu. So, we should find E, then figure out the region.

The kinetic energy of the particle is 1
2 m|v|2, so the total energy of the system (also the

kinetic energy when the potential energy is 0) is 1
2(10)(22) = 20 J.

Therefore, a region it can never escape is
 

(x, y, z)
ˇ

ˇ ϕ(x, y, z) ě ´20
(

that is,
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 ď 20
(

So, it can never escape the sphere centred at the origin with radius
?

20.

S-14: Example 2.3.3 tells us 1
2 m|v(t)|2 ´ ϕ

(
x(t), y(t), z(t)

)
= E is a constant quantity,

provided F is conservative with potential ϕ. So, it would be nice if F were conservative.

If F =∇∇∇ϕ, then

• Bϕ
Bx = 0, so ϕ = ψ1(y, z)

• Bϕ
By = 1, so ϕ = y + ψ2(x, z)

• Bϕ
Bz = 3z1/3, so ϕ = 9

4 z4/3 + ψ3(x, y)
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We can choose ϕ(x, y, z) = y + 9
4 z4/3. So, 1

2 m|v(t)|2 ´ ϕ
(
x(t), y(t), z(t)

)
= E is a constant

quantity, as desired. Using the information that the particle has mass 1/2, and speed 1
when it is at the origin:

E =
1
2
¨ 1

2
|1|2 ´ ϕ

(
0, 0, 0

)
=

1
4

When the particle is at (1, 1, 1):

1
4
=

1
2
¨ 1

2
|v|2 ´ ϕ(1, 1, 1) =

|v|2
4
´
(

1 +
9
4

)

|v| =
?

14

So, at the point (1, 1, 1), the particle has speed
?

14.

S-15:

We can start with the screening test, Theorem 2.3.9.

∇∇∇ˆ F =
(BF3

By
´ BF2

Bz

)
ı̂ıı +
(BF1

Bz
´ BF3

Bx

)
̂ +
(BF2

Bx
´ BF1

By

)
k̂

=
(

g1(y)h1(z)´ g1(y)h1(z)
)

ı̂ıı +
(

0´ 0
)

̂ +
(

0´ 0
)

k̂ = 0

So, it’s possible that the field is conservative. Remember, this test alone isn’t enough to
tell us it’s conservative. (Had the test come out differently, though, we’d be done.)

Suppose F =∇∇∇ϕ(x, y, z). Then:

• Bϕ
Bx = 2 f (x) f 1(x). By inspection, we see ϕ = f 2(x) + ψ1(y, z). (We could also find
this by evaluating

ş

2 f (x) f 1(x)dx with the substitution u = f (x).)

• Bϕ
By = g1(y)h(z), so ϕ = g(y)h(z) + ψ2(x, z).

• Bϕ
Bz = g(y)h1(z), so ϕ = g(y)h(z) + ψ2(x, y).

All together, we can choose ϕ(x, y, z) = f 2(x) + g(y)h(z).

S-16: Following Definition 2.3.8, The curl of a vector field is defined by

∇∇∇ˆ F =
(BF3

By
´ BF2

Bz

)
ı̂ıı +
(BF1

Bz
´ BF3

Bx

)
̂ +
(BF2

Bx
´ BF1

By

)
k̂

When F =
〈

xy, xz, y2 + z
〉
,

∇∇∇ˆ F = (2y´ x)ı̂ıı + (0´ 0)̂ + (z´ x)k̂

When the curl is 0ı̂ıı + 0̂ + 0k̂, we have x = 2y and x = z. That is, our points are of the
form (2c, c, 2c) for any constant c. So, the region in question is the line through the origin
in the direction of the vector (2, 1, 2).
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Solutions to Exercises 2.4 — Jump to TABLE OF CONTENTS

S-1: The square has four sides, each of which is a line segment.

• On the first side, y = 0 and dy = 0. That is, we may parametrize the first side by
r(x) = x ı̂ıı with 0 ď x ď 1.

• On the second side, x = 1 and dx = 0. We may parametrize the second side by
r(y) = ı̂ıı + y ̂ with 0 ď y ď 1.

• On the third side, y = 1 and dy = 0. We may parametrize the third side by
r(x) = x ı̂ıı + ̂ with x running from 1 to 0.

• On the final side, x = 0 and dx = 0. We may parametrize the fourth side by
r(y) = y ̂ with y running from 1 to 0.

(0, 0) (1, 0)

(0, 1) (1, 1)

dx=0
x=1

dx=0
x=0

dy=0
y=0

dy=0
y=1

So
ż

C
x2y2 dx + x3y dy =

ż 1

0
x2 ˆ 02 dx +

ż 1

0
13 ˆ y dy +

ż 0

1
x2 ˆ 12 dx +

ż 0

1
03 ˆ y dy

=
1
2
´ 1

3
=

1
6

S-2: Every F in this problem is defined and has continuous first-order partial derivatives
on all of R2 or R3. The characterization in Theorem 2.4.7 tells us that our fields will be
conservative if and only if they pass the screening test, i.e. have curl 0.

a.

F = xı̂ıı + ẑ + yk̂

∇∇∇ˆ F =
(BF3

By
´ BF2

Bz

)
ı̂ıı +
(BF1

Bz
´ BF3

Bx

)
̂ +
(BF2

Bx
´ BF1

By

)
k̂

= (1´ 1)ı̂ıı + (0´ 0)̂ + (0´ 0)k̂ = 0

This field passes the screening test. Since F is defined and has continuous first-order
partial derivatives on all of R3, it is conservative. So, we have option A.

b.

F = y2zı̂ıı + x2ẑ + x2yk̂

∇∇∇ˆ F =
(BF3

By
´ BF2

Bz

)
ı̂ıı +
(BF1

Bz
´ BF3

Bx

)
̂ +
(BF2

Bx
´ BF1

By

)
k̂

= (x2 ´ x2)ı̂ıı + (y2 ´ 2xy)̂ + (2xz´ 2yz)k̂ ‰ 0
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So, F fails the screening test. So, it’s not conservative. That’s option B.

c.

F = (xexy + 1)ı̂ıı + (yexy + z)̂ +
(

1
z
+ y
)

k̂

∇∇∇ˆ F =
(BF3

By
´ BF2

Bz

)
ı̂ıı +
(BF1

Bz
´ BF3

Bx

)
̂ +
(BF2

Bx
´ BF1

By

)
k̂

= (1´ 1)ı̂ıı + (0´ 0)̂ + (exy(xy + 1)´ xyexy(xy + 1))k̂ = 0

F passes the screening test. Since F is defined and has continuous first-order partial
derivatives on all of R3, it is conservative. So, we have option A.

d.

F = y cos(xy)ı̂ıı + x sin(xy)̂
BF2

Bx
= xy cos(xy) + sin(xy)

BF1

By
= ´xy sin(xy) + cos(xy)

BF2

Bx
‰ BF1

By

F fails the screening test, so it is not conservative. That is Option B.

S-3: Since F is conservative,
ş

C F ¨ dr = 0 over any closed curve C. The given curve is
closed, so the integral is simply zero.

S-4: Since F is conservative, and A and B start and end at the same points, by
path-independence

ş

B F ¨ dr =
ş

A F ¨ dr = 5.

S-5: By Theorem 2.4.6, the condition that “
ş

C F ¨ dr = 0 for all closed paths C” is
equivalent to the condition that “F is conservative”, which, since F is defined on all of R3,
is equivalent to the condition that F pass the screening test

0 =∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

ex sin y aex cos y + bz cx


 = ´b ı̂ıı´ c ̂ +

(
aex cos y´ ex cos y

)
k̂

which is the case if and only if b = c = 0 and a = 1.

S-6: (a) Consider the circle C in the figure (a) on the left below, oriented clockwise. The
vector field F is in the same direction as dr

dt at every point of the curve. So F ¨ dr
dt ą 0 at

every point of C and C is a closed curve with
ű

C F ¨ dr ą 0. As a consequence F is not
conservative.
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(a)

x

y

C

(b)

x

y

L1

L2

L3

L4

(b) Consider the square in the figure (b) on the right above, oriented counterclockwise. It
consists of the four line segments L1, L2, L3 and L4. On all of L1, L2, L3 we have that
F
(
r(t)

) ¨ r1(t) = 0 because the vector field is perpendicular to the line segment. On L4 we
have F

(
r(t)

) ¨ r1(t) ą 0. So

¿

C

F ¨ dr =
ż

L1

F ¨ dr +
ż

L2

F ¨ dr +
ż

L3

F ¨ dr +
ż

L4

F ¨ dr

= 0 + 0 + 0 +
ż

L4

F ¨ dr ą 0

So C is a closed curve with
ű

C F ¨ dr ą 0 and F is not conservative.

(c) Consider the square in the figure (c) on the left below, oriented counterclockwise. It
consists of the four line segments L1, L2, L3 and L4. On L1 and L3 we have that the dot
product F

(
r(t)

) ¨ r1(t) = 0 because the vector field is perpendicular to the line segment.
On L2 we have F

(
r(t)

) ¨ r1(t) ă 0 while on L4 we have F
(
r(t)

) ¨ r1(t) ą 0. The vector field
F is longer on L4 than on L2. So F

(
r(t)

) ¨ r1(t) has a larger magnitude on L4 than L2 and

¿

C

F ¨ dr =
ż

L1

F ¨ dr +
ż

L2

F ¨ dr +
ż

L3

F ¨ dr +
ż

L4

F ¨ dr

= 0 +
ż

L2

F ¨ dr + 0 +
ż

L4

F ¨ dr ą 0

So C is a closed curve with
ű

C F ¨ dr ą 0 and F is not conservative.
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(c)

x

y

L1

L2

L3

L4

(d)

x

y

(d) We are told that one of the four vector fields is conservative. Only the vector field in
(d) is left, so it is conservative.

Remark: We can verify that vector field (d) is indeed conservative by observing (look at
the figure (d) on the right above) that the ı̂ıı component of the vector field is exactly zero
and that the ̂ component depends only on y. So the vector field is of the form

F(x, y) = a(y) ̂

for some function a(y). If A(y) is any antiderivative of a(y), we have F =∇∇∇A, so that F is
conservative with potential A(y).

S-7:

(a) The (largest possible) domain is D =
 

(x, y, z)
ˇ

ˇ x2 + y2 ‰ 0
(

. That is, all of R3 except
the points lying along the z-axis.

(b) As preliminary computations, let’s find

B
By

(
x´ 2y
x2 + y2

)
=

´2
x2 + y2 ´

2y(x´ 2y)

(x2 + y2)2 =
´2x2 + 2y2 ´ 2xy

(x2 + y2)2

B
Bx

(
2x + y
x2 + y2

)
=

2
x2 + y2 ´

2x(2x + y)

(x2 + y2)2 =
´2x2 + 2y2 ´ 2xy

(x2 + y2)2

So the curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x´2y
x2+y2

2x+y
x2+y2 z


 =

(
´2x2 + 2y2 ´ 2xy

(x2 + y2)2 ´ ´2x2 + 2y2 ´ 2xy

(x2 + y2)2

)
k̂ = 0

on the domain of F.

(c) Parametrize the circle by

r(t) = 2 cos t ı̂ıı + 2 sin t ̂ + 3 k̂ r1(t) = ´2 sin t ı̂ıı + 2 cos t ̂
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with 0 ď θ ď 2π. So the integral is

ż

C
F ¨ dr =

ż 2π

0

"

x´2y
x2+y2

hkkkkkkkkikkkkkkkkj

2 cos t´ 4 sin t
4

ı̂ıı +

2x+y
x2+y2

hkkkkkkkkikkkkkkkkj

4 cos t + 2 sin t
4

̂ +

z
hkkikkj

3 k̂
*

¨
!

r1(t)
hkkkkkkkkkkikkkkkkkkkkj

´2 sin t ı̂ıı + 2 cos t ̂
)

dt

=

ż 2π

0

´4 sin t cos t + 8 sin2 t + 8 cos2 t + 4 sin t cos t
4

dt

= 2
ż 2π

0
dt = 4π

(d) As the integral of F around the simple closed curve C is not zero, F cannot be
conservative. See Theorem 2.4.6 and Examples 2.3.14 and 4.3.8 in the CLP-4 text.

S-8: The point here is that F is conservative, as F = ∇φ with

φ =
x2

2
+ yx´ yz +

z2

2
So, for all paths from r(t0) = (1, 0,´1) to r(t1) = (0,´2, 3),

ż

C
F ¨ dr = φ

(
r(t1)

)´ φ
(
r(t0)

)
= φ(0,´2, 3)´ φ(1, 0,´1)

=

[
0 + 0 + 6 +

9
2

]
´
[

1
2
+ 0´ 0 +

1
2

]

= 9
1
2

.

S-9: Note that:

• Along the line segment from (0, 0) to (1, 0), x increases from 0 to 1, while y is held
fixed at y = 0. So we may parametrize this segment by r(x) = x ı̂ıı, 0 ď x ď 1.
• Along the line segment from (1, 0) to (1, π), y increases from 0 to π, while x is held

fixed at x = 1. So we may parametrize this segment by r(x) = ı̂ıı + y ̂, 0 ď y ď π.
• Along the line segment from (1, π) to (0, π), x decreases from 1 to 0, while y is held

fixed at y = π. So we may parametrize this segment by r(x) = x ı̂ıı + π ̂ with x
running from 1 to 0.

Hence
ż

C
V ¨ dr =

ż 1

0
V(x, 0) ¨ ı̂ıı dx +

ż π

0
V(1, y) ¨ ̂ dy +

ż 0

1
V(x, π) ¨ ı̂ıı dx

=

ż 1

0
(ex + x2) dx +

ż π

0
(y + 3) dy +

ż 0

1
(´ex + x2) dx

= 2
ż 1

0
ex dx +

ż π

0
(y + 3) dy

= 2(e´ 1) +
π2

2
+ 3π
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S-10: (a) We may parametrize the curve by r(t) = t ı̂ıı + t2 ̂ with 0 ď t ď 1. Then
v(t) = dr

dt (t) = ı̂ıı + 2t ̂ and F
(
x(t), y(t)

)
= t3 ı̂ıı´ t2 ̂ so

ż

C
F ¨ dr =

ż 1

0
F
(
x(t), y(t)

) ¨ dr
dt

(t) dt =
ż 1

0

[
t3 ı̂ıı´ t2 ̂

] ¨ [ı̂ıı + 2t ̂
]

dt =
ż 1

0

[´ t3]dt

= ´1
4

(b) The path is the union of three line segments.

• On the first segment of the path y = z = 0 so F simplifies to x ı̂ıı´ x k̂ and dr = ı̂ıı dx
(i.e. we can parametrize the first segment of the path by r(x) = x ı̂ıı with 0 ď x ď 1),
so F ¨ dr = x dx.
• On the second segment of the path x = 1, z = 0 so F simplifies to ı̂ıı + ŷ´ (1 + y)k̂

and dr = ̂ dy (parametrize the second segment of the path by r(y) = ı̂ıı + y ̂ with
0 ď y ď 1), so F ¨ dr = y dy.
• On the final segment of the path x = y = 1 so F simplifies to (1´ z)ı̂ıı + (1´ z)̂´ 2k̂

and dr = k̂ dz (parametrize the third segment of the path by r(z) = ı̂ıı + ̂ + z k̂ with
0 ď z ď 1), so F ¨ dr = ´2 dz.

So
ż

C
F ¨ dr =

ż 1

0
x dx +

ż 1

0
y dy +

ż 1

0
(´2)dz =

1
2
+

1
2
´ 2 = ´1

S-11: Parametrize the curve using y as a parameter. Then y = t, x = 2y = 2t and
z = 8

xy = 8
2t2 so that:

r(t) = 2t ı̂ıı + t ̂ +
4
t2 k̂, 1 ď t ď 2

r1(t) = 2 ı̂ıı + ̂´ 8
t3 k̂

F(r(t)) = 4t2 ı̂ıı + 4t3 k̂

F(r(t)) ¨ r1(t) = 8t2 ´ 32

Then

ż

C
F ¨ dr =

ż 2

1
F(r(t)) ¨ r1(t) dt =

ż 2

1

(
8t2 ´ 32

)
dt =

[
8
3

t3 ´ 32t
]2

1
= ´40

3

S-12: Note F is defined and continuous on all of R3. By Theorem 2.4.6, the integral
ş

C F ¨ dr = 0 for all closed paths C if and only if F is conservative. Furthermore, F has
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continuous first-order partial derivatives on all of R3. Using Theorem 2.4.7, F is
conservative if and only if∇∇∇ˆ F = 0:

0 =∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

ex sin y aex cos y + bz cx




= (0´ b)ı̂ıı´ (c´ 0)̂ + (aex cos y´ ex cos y)k̂

So a = 1, b = c = 0.

S-13: (a), (b) The curls of F and G are

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

6x2yz2 2x3z2 + 2y´ xz 4x3yz




= (4x3z´ 4x3z + x) ı̂ıı´ (12x2yz´ 12x2yz) ̂ + (6x2z2 ´ z´ 6x2z2) k̂

= x ı̂ıı´ z k̂

∇∇∇ˆG = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

yz 0 xy




= xı̂ıı´ z k̂

Hence the screening test for

∇∇∇ˆ (F + λG
)
= (x + λx) ı̂ıı´ (z + λz) k̂

passes for λ = ´1. Furthermore

F´G = (6x2yz2 ´ yz) ı̂ıı + (2x3z2 + 2y´ xz) ̂ + (4x3yz´ xy) k̂

=∇∇∇
(
2x3yz2 ´ xyz + y2)

The potential was found by guessing. Alternatively, we can find it by using that φ(x, y, z)
is a potential for F´G if and only if

Bφ

Bx
(x, y, z) = 6x2yz2 ´ yz

Bφ

By
(x, y, z) = 2x3z2 + 2y´ xz

Bφ

Bz
(x, y, z) = 4x3yz´ xy

Integrating the first of these equations gives

φ(x, y, z) = 2x3yz2 ´ xyz + f (y, z)

Substituting this into the second equation gives

2x3z2 ´ xz +
B f
By

(y, z) = 2x3z2 + 2y´ xz or
B f
By

(y, z) = 2y
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which integrates to
f (y, z) = y2 + g(z)

Finally, substituting φ(x, y, z) = 2x3yz2 ´ xyz + y2 + g(z) into the last equation gives

4x3yz´ xy + g1(z) = 4x3yz´ xy or g1(z) = 0

which integrates to
g(z) = K

with K being an arbitrary constant. Choosing K = 0 gives the potential
φ(x, y, z) = 2x3yz2 ´ xyz + y2 as in the guess above.

(c) Any point (x, y, z) on the curve must have z = x and y = exz = ex2
. So we may

parametrize the curve by r(x) = x ı̂ıı + ex2
̂ + x k̂, 0 ď x ď 1. Hence

ż

C
F ¨ dr =

ż

C
(F´G) ¨ dr +

ż

C
G ¨ dr

=
[
2x3yz2 ´ xyz + y2

](1,e,1)

(0,1,0)
+

ż 1

0

G(r(x))
hkkkkkkkkikkkkkkkkj

[xex2
ı̂ıı + xex2

k̂] ¨

dr
dx

hkkkkkkkkikkkkkkkkj

[ı̂ıı + 2xex2
̂ + k̂] dx

= e + e2 ´ 1 +
ż 1

0
2xex2

dx = e + e2 ´ 1 +
[
ex2
]1

0
= e2 + 2e´ 2

S-14: Parametrize the line segment by

r(t) = (0, 0, 1) + t
 

(2, 1, 0)´ (0, 0, 1)
(

=
(
2t, t, 1´ t

)
0 ď t ď 1

so that r(0) = (0, 0, 1) is the initial point of the line segment and r(1) = (2, 1, 0) is the
final point of the segment. Then

r1(t) = (2, 1,´1)

and the work is
ż

F ¨ dr =
ż 1

0
F
(
r(t)

) ¨ r1(t)dt =
ż 1

0

(
2t´ t2 , t´ (1´ t)2 , (1´ t)´ 4t2) ¨ (2, 1,´1)dt

=

ż 1

0

(
4t´ 2t2 + t´ 1 + 2t´ t2 ´ 1 + t + 4t2)dt =

ż 1

0

(
t2 + 8t´ 2

)
dt

=
1
3
+ 4´ 2 =

7
3

S-15: On P, z = ln 1
x = ´ ln(x). So parametrize the curve P by

r(θ) = cos θ ı̂ıı + sin θ ̂´ ln(cos θ) k̂ 0 ď θ ď π

4
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Then

r 1(θ) = ´ sin θ ı̂ıı + cos θ ̂ + tan θ k̂

F
(
r(θ)

)
= cos θ ı̂ıı + sin θ ̂ + cos3 θ k̂

F
(
r(θ)

) ¨ r 1(θ) = sin θ cos2 θ

so that

Work =

ż

P
F ¨ dr =

ż π/4

0
F
(
r(θ)

) ¨ r 1(θ) dθ =

ż π/4

0
sin θ cos2 θ dθ = ´1

3
cos3 θ

ˇ

ˇ

ˇ

π/4

0

=
1
3
[
1´ 1

23/2

] « 0.2155

S-16: Hmmm. F looks suspiciously complicated. Let’s guess that F is conservative and
look for a potential for it. φ(x, y, z) is a potential for this F if and only if

Bϕ

Bx
(x, y, z) = yz cos x

Bϕ

By
(x, y, z) = z sin x + 2yz

Bϕ

Bz
(x, y, z) = y sin x + y2 ´ sin z

Integrating the first of these equations gives

ϕ(x, y, z) = yz sin x + f (y, z)

Substituting this into the second equation gives

z sin x +
B f
By

(y, z) = z sin x + 2yz or
B f
By

(y, z) = 2yz

which integrates to
f (y, z) = y2z + g(z)

Finally, substituting ϕ(x, y, z) = yz sin x + y2z + g(z) into the last equation gives

y sin x + y2 + g1(z) = y sin x + y2 ´ sin z or g1(z) = ´ sin z

which integrates to
g(z) = cos z + C

with C being an arbitrary constant. So φ(x, y, z) = yz sin x + y2z + cos z is one allowed
scalar potential and the specified integral is

ż

C
F ¨ dr = ϕ(r)

ˇ

ˇ

ˇ

r(π/2)

r(0)
= ϕ(π/2 , π/2 , π/2)´ ϕ(0, 0, 0) =

π3

8
+

π2

4
´ 1
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S-17: Solution 1:
We are being asked to evaluate the line integral

ş

C F ¨ dr with C being the specified
semi-circle and F = xy ̂. As∇∇∇ˆ F ‰ 0, the vector field F is not conservative. So we’ll
evaluate the integral directly. First, using the figure,

x

y

(x− 1)2 + y2 = 1

(
1 , 0

)

(
1− cos θ , sin θ

)

θ

we parametrize C by

r(θ) =
(
x(θ) , y(θ)

)
= (1´ cos θ) ı̂ıı + sin θ ̂ 0 ď θ ď π

So the integral is
ż

C
xy dy =

ż π

0
x(θ) y(θ) y1(θ) dθ =

ż π

0
(1´ cos θ) sin θ cos θ dθ

Making the substitution u = cos θ, du = ´ sin θ dθ, u(0) = 1, u(π) = ´1,
ż

C
xy dy =

ż ´1

1
(1´ u) u (´du) =

ż 1

´1
(u´ u2)du = ´2

ż 1

0
u2 du = ´2

13

3
= ´2

3

Solution 2:
We can write x in terms of y over C in two pieces:

• Let C1 be the quarter-circle x = 1´a

1´ y2 as y goes from 0 to 1, and

• Let C2 be the quarter-circle x = 1 +
a

1´ y2 as y goes from 1 to 0.

Then:
ż

C
xydy =

ż

C1

xydy +

ż

c2

xydy

=

ż 1

0

(
1´

b

1´ y2
)

y dy +

ż 0

1

(
1 +

b

1´ y2
)

y dy

=

ż 1

0
y dy´

ż 1

0
y
b

1´ y2 dy +

ż 0

1
y dy +

ż 0

1
y
b

1´ y2 dy

= ´2
ż 1

0
y
b

1´ y2 dy

Using the substitution u = 1´ y2, du = ´2y dy:

=

ż 0

1
u1/2du = ´2

3
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S-18:

The line integral is
ş

C F ¨ dr with F = (yex + sin y) ı̂ıı + (ex + sin y + x cos y) ̂. We are to
show that it is independent of path. That is the case if and only if F is conservative. So
let’s look for a potential ϕ for F. That is, let’s look for a function ϕ that obeys

Bϕ

Bx
(x, y) = yex + sin y

Bϕ

By
(x, y) = ex + sin y + x cos y

Integrating the first of these equations gives

ϕ(x, y) = yex + x sin y + f (y)

Substituting this into the second equation gives

ex + x cos y + f 1(y) = ex + sin y + x cos y or f 1(y) = sin y

which integrates to
f (y) = ´ cos y + C

So F is indeed conservative with one potential being ϕ(x, y) = yex + x sin y´ cos y and
the line integral is

ż

C
(yex + sin y)dx + (ex + sin y + x cos y)dy =

ż

C
F ¨ dr = ϕ(x, y)

ˇ

ˇ

ˇ

(0,π/2)

(1,0)

=
[
yex + x sin y´ cos y

](0,π/2)

(1,0)

= 1 +
π

2

S-19: Here is a sketch of C.

C1

C3

C2

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

y

z

x

Note that

˝ y = 0 on the line segment from (1, 0, 0) to (0, 0, 1) so that the integral reduces to
ş

zx dz on that line segment and
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˝ x = 0 on the line segment from (0, 0, 1) to (0, 1, 0) so that the integral reduces to
ş

yz dy on that line segment and
˝ z = 0 on the line segment from (0, 1, 0) to (1, 0, 0) so that the integral reduces to
ş

xy dx on that line segment.

So it looks feasible to evaluate the integral directly. Label the sides of the triangle C1, C2
and C3 as in the sketch above.

˝ We parametrize C1 by r(t) = (1, 0, 0) + t[(0, 0, 1)´ (1, 0, 0)] = (1´ t , 0 , t),
0 ď t ď 1. So

ż

C1

xy dx + yz dy + zx dz =

ż

C1

zx dz =

ż 1

0

x
hkkikkj

(1´ t)

z
hkkikkj

(t)

z1(t)
hkkikkj

(1) dt =
ż 1

0
(t´ t2)dt

=
1
2
´ 1

3
=

1
6

˝ We parametrize C2 by r(t) = (0, 0, 1) + t[(0, 1, 0)´ (0, 0, 1)] = (0 , t , 1´ t),
0 ď t ď 1. So

ż

C2

xy dx + yz dy + zx dz =

ż

C2

yz dy =

ż 1

0

y
hkkikkj

(t)

z
hkkikkj

(1´ t)

y1(t)
hkkikkj

(1) dt =
ż 1

0
(t´ t2)dt

=
1
2
´ 1

3
=

1
6

˝ We parametrize C3 by r(t) = (0, 1, 0) + t[(1, 0, 0)´ (0, 1, 0)] = (t , 1´ t , 0),
0 ď t ď 1. So

ż

C3

xy dx + yz dy + zx dz =

ż

C3

xy dx =

ż 1

0

x
hkkikkj

(t)

y
hkkikkj

(1´ t)

x1(t)
hkkikkj

(1) dt =
ż 1

0
(t´ t2)dt

=
1
2
´ 1

3
=

1
6

All together

ż

C
xy dx + yz dy + zx dz =

3
ÿ

`=1

ż

C`

xy dx + yz dy + zx dz = 3ˆ 1
6
=

1
2

S-20: We are told that F is conservative. Let’s find a potential ϕ obeying∇∇∇ϕ = F. That is,

Bϕ

Bx
= y + zex

Bϕ

By
= x + ey sin z

Bϕ

Bz
= z + ex + ey cos z
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The first equation forces ϕ(x, y, z) = xy + zex + ψ(y, z). Substituting this into the second
equation gives x + Bψ

By (y, z) = x + ey sin z or Bψ
By (y, z) = ey sin z which forces

ψ(y, z) = ey sin z + ζ(z). So far, we have ϕ(x, y, z) = xy + zex + ey sin z + ζ(z).
Substituting this into the third equation gives ex + ey cos z + ζ1(z) = z + ex + ey cos z or
ζ1(z) = z which forces ζ(z) = z2

2 + C, for some constant C, which we take to be zero. So
our potential is

ϕ(x, y, z) = xy + zex + ey sin z +
z2

2
So the line integral

ż

C
F ¨ dr = ϕ

(
r(π)

)´ ϕ
(
r(0)

)
= ϕ

(
π, eπ, 0

)´ ϕ
(
0, 1, 0

)
= πeπ

S-21: (a) Note F is defined and continuous on all of R3. Furthermore, F has continuous
first-order partial derivatives on all of R3. Using Theorem 2.4.7, F is conservative if and
only if it has zero curl:

0 =∇∇∇ˆ F =∇∇∇ˆ (αey ı̂ıı + (xey + β cos z) ̂´ γy sin z k̂
)

= (´γ sin z + β sin z)ı̂ıı + (ey ´ αey)k̂

which is the case if and only if α = 1, β = γ.

(b) We use Theorem 2.4.2: if ϕ is a potential for F, then
ż

C
F ¨ dr = ϕ(P1)´ ϕ(P0)

where C runs from P0 to P1. So, we find ϕ.

Assume that α = 1, β = γ. We find a potential ϕ for F by antidifferentiating.

Bϕ

Bx
(x, y, z) = ey ùñ ϕ(x, y, z) = xey + ψ1(y, z)

Bϕ

By
(x, y, z) = xey + β cos z ùñ ϕ(x, y, z) = xey + βy cos z + ψ2(x, z)

Bϕ

Bz
(x, y, z) = ´βy sin z ùñ ϕ(x, y, z) = βy cos z + ψ3(x, y)

for some functions ψ1(y, z), ψ2(x, z) and ψ3(x, y) to be determined.

We’d like a single function ϕ(x, y, z) that simultaneously obeys all three of these
equations, for some ψj’s. An initial guess is simply the sum of all of the distinct terms,
other that the ψj’s, that appear in the three equations above. The term xey appears in the
ψ1 and ψ2 equations and the term βy cos z appears in the ψ2 and ψ3 equations. So we
guess

ϕ(x, y, z) ?
= xey + βy cos z

If we let ψ1(y, z) = βy cos z, ψ2(x, z) = 0, and ψ3(x, y) = xey, then we see this function
ϕ(x, y, z) does indeed obey all three equations and so is a potential for F.
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The curve C runs from P0 = (02, e0, π ¨ 0) = (0, 1, 0) to P1 = (12, e1, π ¨ 1) = (1, e, π).
Using Theorem 2.4.2:

ż

C
F ¨ dr = ϕ(1, e, π)´ ϕ(0, 1, 0) =

(
ee ´ βe

)´ β = ee ´ β(e + 1)

S-22: (a) The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

cos x 2 + sin y ez


 = 0

Because F1 is a function only of x, F2 is a function only of y, and F3 is a function only of z,
that all partial derivatives used in computing the curl are 0.

(b) The vector field F passes the screening test on all of R3 and so is conservative by
Theorem 2.4.7 in the text. Alternatively, we can see that

F =∇∇∇
(

sin x + 2y´ cos y + ez)

by inspection. Alternatively, f can be found by antidifferentiating its partial derivatives:

B f
Bx

(x, y, z) = cos x ùñ f (x, y, z) = sin x + ψ1(y, z)

B f
By

(x, y, z) = 2 + sin y ùñ f (x, y, z) = 2y´ cos y + ψ2(x, z)

B f
Bz

(x, y, z) = ez ùñ f (x, y, z) = ez + ψ3(x, y)

We’d like a single function f (x, y, z) that simultaneously obeys all three of these
equations, for some ψj’s. An initial guess is simply the sum of all of the distinct terms,
other than the ψj’s, that appear in the three equations. The term sin x appears in the ψ1
equation, the terms 2y and ´ cos y appears in the ψ2 equation, and the term ez appears in
the ψ3 equation. So we guess

f (x, y, z) ?
= sin x + 2y´ cos y + ez

If we let ψ1(y, z) = 2y´ cos y + ez, ψ2(x, z) = sin x + ez, and ψ3(x, y) = sin x + 2y´ cos y,
then we see this function f (x, y, z) is indeed a potential for F.

(c) Since F =∇∇∇ f ,
ż

C
F ¨ dr = f

(
r(3π)

)´ f
(
r(0)

)

= f (3π,´1, 0)´ f (0, 1, 0)

=
(
0´ 2´ cos(´1) + 1

)´ (0 + 2´ cos 1 + 1
)

Since cosine is an even function, cos(´1) = cos 1.

= ´4
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S-23: (a) The curl is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

z + ey xey ´ ez sin y 1 + x + ez cos y


 = 0

so F passes the screening test. Since its first-order partial derivatives are continuous on
all of R3, it is conservative by Theorem 2.4.7 in the text.

By inspection, the potential is ϕ(x, y, z) = xz + xey + ez cos y + z — this is another way to
verify that F is conservative. Alternatively, ϕ can be found by antidifferentiating its
partial derivatives.

Bϕ

Bx
(x, y, z) = z + ey ùñ ϕ(x, y, z) = zx + xey + ψ1(y, z)

Bϕ

By
(x, y, z) = xey ´ ez sin y ùñ ϕ(x, y, z) = xey + ez cos y + ψ2(x, z)

Bϕ

Bz
(x, y, z) = 1 + x + ez cos y ùñ ϕ(x, y, z) = z + zx + ez cos y + ψ3(x, y)

We’d like a single function ϕ(x, y, z) that simultaneously obeys all three of these
equations. An initial guess is simply the sum of the distinct terms (without the ψj’s) that
appear in the equations above:

ϕ(x, y, z) ?
= zx + xey + ez cos y + z

If we let ψ1(y, z) = ez cos y + z, ψ2(x, z) = zx + z, and ψ3(x, y) = xey, then we see this
function ϕ(x, y, z) is indeed a potential for F.

(b) Since F =∇∇∇ϕ, with ϕ = xz + xey + ez cos y + z,

ż

C
F ¨ dr = ϕ

(
r(π)

)´ ϕ
(
r(0)

)
=
[

xz + xey + ez cos y + z
]r(π)

r(0)

=
[

xz + xey + ez cos y + z
](π2,0,1)

(0,0,1)

=
(

π2 + π2 + e + 1
)
´ (0 + 0 + e + 1) = 2π2

S-24: (a) For F to be conservative, it must pass the screening test

0 =∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

(x´ a)yex xex + z3 byz2




=
(
bz2 ´ 3z2) ı̂ıı´ (0´ 0

)
̂ +
(
ex + xex ´ (x´ a)ex) k̂

This is the case if and only if b = 3 and a = ´1
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(b) Set a = ´1 and b = 3. For f to be a potential for F, it must obey

B f
Bx

(x, y, z) = (x + 1)yex

B f
By

(x, y, z) = xex + z3

B f
Bz

(x, y, z) = 3yz2

Integrating the second of these equations gives

f (x, y, z) = xyex + yz3 + g(x, z)

Substituting this into the last equation gives

3yz2 +
Bg
Bz

(x, z) = 3yz2 or
Bg
Bz

(x, z) = 0

which forces
g(x, z) = h(x)

Finally, substituting f (x, y, z) = xyex + yz3 + h(x) into the first equation gives

xyex + yex + h1(x) = (x + 1)yex or h1(x) = 0

So h(x) = C and hence f (x, y, z) = xyex + yz3 + C works for any constant C.

(c) Since F =∇∇∇ f ,
ż

C
F ¨ dr =

ż

C
∇∇∇ f ¨ dr = f

(
r(π))´ f (

(
r(0)

)
= f (π, 1,´1)´ f (0, 1, 1)

=
[
πeπ ´ 1

]´ [1] = πeπ ´ 2

(d) Since
ż

C
F ¨ dr =

ż

C
(x + 1)yex dx + (xex + z3)dy + 3yz2 dz

we have

I =
ż

C
F ¨ dr +

ż

C
yz2dz

= πeπ ´ 2 +
ż π

0

y
hkkkikkkj

(cos 2t)

z2
hkkikkj

cos2 t

dz
hkkkkkikkkkkj

(´ sin t)dt

= πeπ ´ 2 +
ż π

0
(2 cos2 t´ 1) cos2 t(´ sin t)dt

= πeπ ´ 2 +
ż ´1

1
(2u2 ´ 1)u2 du with u = cos t, du = ´ sin t dt

= πeπ ´ 2 +
[2u5

5
´ u3

3

]´1

1

= πeπ ´ 2 +
[
´ 4

5
+

2
3

]

= πeπ ´ 32
15
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S-25: (a) The vector field F is conservative if and only if it passes the screening test
∇∇∇ˆ F = 0. That is, if and only if,

0 =∇∇∇ˆ F = det

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

y2e3z + Axy3 2xye3z + 3x2y2 Bxy2e3z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

=
(
2Bxye3z ´ 6xye3z) ı̂ıı´ (By2e3z ´ 3y2e3z) ̂ +

(
2ye3z + 6xy2 ´ 2ye3z ´ 3Axy2) k̂

So F is conservative if and only if A = 2 and B = 3.

(b) Let A = 2 and B = 3. We find a potential ϕ for F by antidifferentiating its partial
derivatives.

Bϕ

Bx
(x, y, z) = y2e3z + 2xy3 ùñ ϕ(x, y, z) = xy2e3z + x2y3 + ψ1(y, z)

Bϕ

By
(x, y, z) = 2xye3z + 3x2y2 ùñ ϕ(x, y, z) = xy2e3z + x2y3 + ψ2(x, z)

Bϕ

Bz
(x, y, z) = 3xy2e3z ùñ ϕ(x, y, z) = xy2e3z + ψ3(x, y)

Let’s guess that
ϕ(x, y, z) = xy2e3z + x2y3

(This was obtained by summing the distinct terms in the above three equations, without
the ψi’s.) If we set ψ1(y, z) = ψ2(x, z) = 0 and ψ3(x, y) = x2y3, we see our choice of ϕ is
indeed a potential for F.

(c) Set A = 2 and B = 3. We are asked the evaluate
ş

C G ¨ dr with

G = (y2e3z + xy3) ı̂ıı + (2xye3z + 3x2y2) ̂ + 3xy2e3z k̂ = F´ xy3 ı̂ıı

So
ż

C
(y2e3z + xy3)dx + (2xye3z + 3x2y2)dy + 3xy2e3z dz =

ż

C
F ¨ dr´

ż

C
xy3 dr

= ϕ
(
r(1)

)´ ϕ
(
r(0)

)´
ż 1

0

xy3 ı̂ıı
hkkkkikkkkj

e2t(e´t)3 ı̂ıı ¨
(

r1(t)
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

2e2t ı̂ıı´ e´t ̂ +
1

1 + t
k̂
)

dt

= ϕ
(
e2, 1/e, ln 2

)´ ϕ
(
1, 1, 0

)´
ż 1

0
2et dt

=
 

e2(1/e
)2e3 ln 2 + e4(1/e

)3(´ (1 + 1
)´ 2(e´ 1)

= 23 + e´ 2´ 2e + 2
= 8´ e
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S-26: (a) The field is conservative only if

BF1

By
=
BF2

Bx
BF1

Bz
=
BF3

Bx
BF2

Bz
=
BF3

By

That is,

B
By

(2x sin(πy)´ ez) =
B
Bx

(
ax2 cos(πy)´ 3ez

)
ðñ 2πx cos(πy) = 2ax cos(πy)

B
Bz

(2x sin(πy)´ ez) = ´BBx
(x + by) ez ðñ ´ez = ´ez

B
Bz

(
ax2 cos(πy)´ 3ez

)
= ´BBy

(x + by) ez ðñ ´3ez = ´bez

Hence only a = π, b = 3 works.

(b) When a = π, b = 3

F = (2x sin(πy)´ ez) ı̂ıı +
(

πx2 cos(πy)´ 3ez
)

̂´ (x + 3y) ezk̂

=∇∇∇
(
x2 sin(πy)´ xez ´ 3yez + C

)

so ϕ(x, y, z) = x2 sin(πy)´ xez ´ 3yez + C for any constant C. Here ϕ was guessed.
Alternatively, it can be found by antidifferentiating the partial derivatives of F.

Bϕ

Bx
(x, y, z) = 2x sin(πy)´ ez ùñ ϕ(x, y, z) = x2 sin(πy)´ xez + ψ1(y, z)

Bϕ

By
(x, y, z) = πx2 cos(πy)´ 3ez ùñ ϕ(x, y, z) = x2 sin(πy)´ 3yez + ψ2(x, z)

Bϕ

Bz
(x, y, z) = ´(x + 3y)ez ùñ ϕ(x, y, z) = ´xez ´ 3yez + ψ3(x, y)

Summing the distinct terms on the right hand sides of the three equations above, we
guess

ϕ(x, y, z) = x2 sin(πy)´ xez ´ 3yez

is a potential for F. Setting ψ1(y, z) = ´3yez, ψ2(x, z) = ´xez, and ψ3(x, y) = x2 sin(πy)
convinces us that our guess is indeed a valid potential.

(c) By part (b),
ż

C
F ¨ dr = ϕ(1, 1, ln 2)´ ϕ(0, 0, 0) =

(
sin π ´ eln 2 ´ 3eln 2

)
´ (sin(0)´ 0´ 0) = ´8

(d) Observe that G = F + 3yez k̂, with F evaluated with a = π, b = 3. Hence
ż

C
G ¨ dr =

ż

C
F ¨ dr +

ż

C
3yez k̂ ¨ dr = ´8 +

ż

C
3yez k̂ ¨ dr

To evaluate the remaining integral, parametrize the curve by r(t) = tı̂ıı + t̂ + ln(1 + t)k̂
with 0 ď t ď 1. Then r1(t) = ı̂ıı + ̂ + 1

1+t k̂ and 3yezk̂ = 3t(1 + t)k̂ so that
3yez k̂ ¨ dr = 3t dt. Subbing in

ż

C
G ¨ dr = ´8 +

ż 1

0
3t dt = ´8 +

3
2
= ´13

2

253



S-27: (a) The potential f must obey

B f
Bx

(x, y, z) = ´2y cos x sin x

B f
By

(x, y, z) = cos2 x + (1 + yz)eyz

B f
Bz

(x, y, z) = y2eyz

Integrating the last of these equations with respect to z gives

f (x, y, z) = yeyz + g(x, y)

Substituting this into the second equation gives

eyz + yzeyz +
Bg
By

(x, y) = cos2 x + (1 + yz)eyz or
Bg
By

(x, y) = cos2 x

which forces
g(x, y) = y cos2 x + h(x)

Finally, substituting f (x, y, z) = yeyz + y cos2 x + h(x) into the first equation gives

´2y sin x cos x + h1(x) = ´2y cos x sin x or h1(x) = 0

So h(x) = C and hence f (x, y, z) = yeyz + y cos2 x + C works for any constant C.

(b) By part (a)
ż

C
F ¨ dr =

ż

C
∇∇∇ f ¨ dr = f

(
π, eπ, 0

)´ f
(
0, 1,´π2) =

[
yeyz + y cos2 x

](π,eπ ,0)

(0,1,´π2)

=
(
2eπ
)´ (e´π2

+ 1
)

S-28: (a) The curl of F is zero because F1 is a function only of x, F2 is a function only of y,
and F3 is a function only of z. That is:

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

2x 2y 2z


 = (0´ 0)ı̂ıı + (0´ 0)̂ + (0´ 0)k̂ = 0

(b) All first-order partial derivative of F are continuous on all of R3. By part (a), F passes
the screening test and is conservative by Theorem 2.4.7 in the text. By inspection, a
potential is ϕ = x2 + y2 + z2. Since F =∇∇∇ϕ,

ż

C
F ¨ dr =

[
x2 + y2 + z2

](a1,a2,a3)

(0,0,0)
= a2

1 + a2
2 + a2

3 = a ¨ a
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S-29: (a) The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

eyz xzeyz + zey xyeyz + ey




=
[
(xeyz + xyzeyz + ey)´ (xeyz + xyzeyz + ey)

]
ı̂ıı´ [yeyz ´ yeyz] ̂ +

[
zeyz ´ zeyz] k̂

= 0

(b) F is defined on all of R3 and passes the conservative field screening test∇∇∇ˆ F = 0. So
F is conservative. We find a potential ϕ for F by antidifferentiating its partial derivatives.

Bϕ

Bx
(x, y, z) = eyz ùñ ϕ(x, y, z) = xeyz + ψ1(y, z)

Bϕ

By
(x, y, z) = xzeyz + zey ùñ ϕ(x, y, z) = xeyz + zey + ψ2(x, z)

Bϕ

Bz
(x, y, z) = xyeyz + ey ùñ ϕ(x, y, z) = xeyz + zey + ψ3(x, y)

All together, ϕ(x, y, z) = xeyz + zey + C works for any constant C. So the specified work
integral is

ż

C
F ¨ dr = ϕ

(
r(π/2)

)´ ϕ
(
r(0)

)
= ϕ

(
0, 1, π/2

)´ ϕ
(
1, 0, 0

)
=

πe
2
´ 1

S-30: (a), (b) The function f (x, y) is a potential for F(x, y) if and only if it obeys

B f
Bx

(x, y) = 2xy cos(x2)

B f
By

(x, y) = sin(x2)´ sin(y)

Integrating the first of these equations gives

f (x, y) = y sin(x2) + g(y)

Substituting this into the second equation gives

sin(x2) + g1(y) = sin(x2)´ sin(y) or g1(y) = ´ sin(y)

which integrates to
g(y) = cos(y) + C

with C an arbitrary constant. Hence f (x, y) = y sin(x2) + cos(y) + C is a potential for any
constant C. Because F has a potential, it is conservative.

(c) We may parametrize C by

r(t) = sin(t) ı̂ıı + t ̂
π

2
ď t ď π
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As f (x, y) = y sin(x2) + cos(y) is a potential for F
ż

C
F ¨ dr = f

(
r(π)

)´ f
(
r(π/2)

)
= f

(
0, π

)´ f
(
1, π/2

)
=
(´ 1

)´
(π

2
sin(1)

)

= ´1´ π

2
sin(1)

S-31: (a) The stated integral property is characteristic of conservative fields
(Theorem 2.4.6). Since all partial derivatives of F are defined on all of R3, an equivalent
property is

0 = ∇ˆ F =

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

(mxyz + z2 ´ ny2) (x2z´ 4xy) (x2y + pxz + qz3)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= ı̂ıı
(
x2 ´ x2)´ ̂ (2xy + pz´mxy´ 2z) + k̂ (2xz´ 4y´mxz + 2ny).

This requires p = 2, m = 2, and n = 2, but leaves q P R completely free.

(b) Solution 1:
The choices from (a) give

F = (2xyz + z2 ´ 2y2) ı̂ıı + (x2z´ 4xy) ̂ + (x2y + 2xz + qz3) k̂.

We find a potential ϕ for F by antidifferentiating its partial derivatives.

Bϕ

Bx
(x, y, z) = 2xyz + z2 ´ 2y2 ùñ ϕ(x, y, z) = x2yz + xz2 ´ 2xy2 + ψ1(y, z)

Bϕ

By
(x, y, z) = x2z´ 4xy ùñ ϕ(x, y, z) = x2yz´ 2xy2 + ψ2(x, z)

Bϕ

Bz
(x, y, z) = x2y + 2xz + qz3 ùñ ϕ(x, y, z) = x2yz + xz2 +

q
4

z4 + ψ3(x, y)

All together, F = ∇ϕ for

ϕ(x, y, z) = x2yz + xz2 ´ 2xy2 +
1
4

qz4 + C

where C is any constant.

Rearranging the sphere’s equation to x2 + y2 + (z´ 1)2 = 1 reveals that its bottom is at
r0 = (0, 0, 0), and its top is at r1 = (0, 0, 2). Hence the work done is

W =

ż

C
F ¨ dr =

ż

C
∇ϕ ¨ dr = ϕ(0, 0, 2)´ ϕ(0, 0, 0) = 4q

Solution 2:
Since the integral is path-independent, all paths from r0 to r1 produce the same result. A
simple choice is

C : r = (0, 0, t), 0 ď t ď 2
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Here r1(t) = (0, 0, 1), so direct calculation gives
ż

C
F ¨ dr =

ż 2

t=0
F
(
r(t)

) ¨ r1(t)dt =
ż 2

t=0
qt3 dt =

[1
4

qt4
]2

t=0
= 4q

S-32: (a) Parametrize C by x. When the first component of a point on the curve is x, then
the second component, y, must be x2 and the third component, z, must be x3. So

r(x) = x ı̂ıı + x2 ̂ + x3 k̂ 0 ď x ď 1

r1(x) = ı̂ıı + 2x ̂ + 3x2 k̂
ds
dx

(x) =
a

1 + 4x2 + 9x4

and

ρ(x)
ds
dx

(x) =
(
8x + 36x3)a1 + 4x2 + 9x4

ż

C
ρ ds =

ż 1

0

(
8x + 36x3)a1 + 4x2 + 9x4 dx

Substituting u = 1 + 4x2 + 9x4, du =
(
8x + 36x3)dx, u(0) = 1, u(1) = 14,

ż

C
ρ ds =

ż 14

1

?
u du =

2
3

u3/2
ˇ

ˇ

ˇ

ˇ

14

1

=
2
3
[
143/2 ´ 1

] « 34.26

(b) Since F(x, y, z) = ∇ f (x, y, z) with f (x, y, z) = x sin y + yz + 1
2 z2,

ż

C
F ¨ dr = f (1, 1, 1)´ f (0, 0, 0) = sin 1 +

3
2
« 2.3415

The potential f was just guessed. Alternatively, it can be found by solving

B f
Bx

(x, y, z) = sin y

B f
By

(x, y, z) = x cos y + z

B f
Bz

(x, y, z) = y + z

Integrating the first of these equations gives

f (x, y, z) = x sin y + g(y, z)

Substituting this into the second equation gives

x cos y +
Bg
By

(y, z) = x cos y + z or
Bg
By

(x, z) = z
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which forces
g(y, z) = yz + h(z)

Finally, substituting f (x, y, z) = x sin y + yz + h(z) into the last equation gives

y + h1(z) = y + z or h1(z) = z

So h(x) = z2

2 + C and hence f (x, y, z) = x sin y + yz + z2

2 + C for any constant C.

S-33: First, we’ll parametrize (x, y), which wraps once, counterclockwise, aroung the
circle x2 + y2 = 1. So x(t) = cos t, y(t) = sin t, 0 ď t ď 2π works. As (x, y) wraps around
the circle, z has to start at 0 (when t = 0) and end at 1 (when t = 2π). So z(t) = t

2π works
and our parametrization is

r(t) = cos t ı̂ıı + sin t ̂ +
t

2π
k̂

(Compare to Example 1.4.4 in the CLP-4 text.) With this parametrization

r1(t) = ´ sin t ı̂ıı + cos t ̂ +
1

2π
k̂

F
(
x(t), y(t), z(t)

)
= ´ sin t ı̂ıı + cos t ̂ +

t2

4π2 k̂

F
(
x(t), y(t), z(t)

) ¨ r1(t) = 1 +
t2

8π3

and
ż

C
F ¨ dr =

ż 2π

0
F
(
x(t), y(t), z(t)

) ¨ r1(t) dt =
ż 2π

0

(
1 +

t2

8π3

)
dt

= 2π +
1
3

S-34: (a) Let’s evaluate the integral directly using the parametrization

r(x) = x ı̂ıı + (9´ x2) ̂

with ´3 ď x ď 3.

Since r1(x) = ı̂ıı´ 2x ̂,

ż

C
(x2 + y)dx + x dy =

ż 3

´3

(
x2 +

y
hkkikkj

9´ x2 +x

dy
dx

hkkikkj

(´2x)
)

dx =

ż 3

´3

(
9´ 2x2)dx

= 2
ż 3

0

(
9´ 2x2)dx = 2

(
27´ 2

33

3

)
= 18

(b) In this solution, we’ll evaluate the integral directly. Label the four sides of the square
L1, L2, L3 and L4 as in the figure
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(1, 1)

(1, 0)

(0, 1)

L1

L2

L3

L4

x

y

The parametrization of L1 by arc length is r(s) = s ı̂ıı, 0 ď s ď 1. As the outward pointing
normal to L1 is ´̂,

ż

L1

F ¨ n̂ ds =
ż 1

0
F(s, 0) ¨ (´̂)ds =

ż 1

0
(´0)ds = 0

The parametrization of L2 by arc length is r(s) = ı̂ıı + s ̂, 0 ď s ď 1. As the outward
pointing normal to L2 is ı̂ıı,

ż

L2

F ¨ n̂ ds =
ż 1

0
F(1, s) ¨ ı̂ıı ds =

ż 1

0
2 ds = 2

The parametrization of L3 by arc length (starting at (1, 1)) is r(s) = (1´ s) ı̂ıı + ̂, 0 ď s ď 1.
As the outward pointing normal to L3 is ̂,

ż

L3

F ¨ n̂ ds =
ż 1

0
F(1´ s, 1) ¨ ̂ ds =

ż 1

0
e1´s ds =

[
´ e1´s

]1

0
= e´ 1

The parametrization of L4 by arc length (starting at (0, 1)) is r(s) = (1´ s) ̂, 0 ď s ď 1. As
the outward pointing normal to L4 is ´ı̂ıı,

ż

L2

F ¨ n̂ ds =
ż 1

0
F(0, 1´ s) ¨ (´ı̂ıı)ds =

ż 1

0
(´0)ds = 0

All together
ż

C
F ¨ n̂ ds =

ż

L1

F ¨ n̂ ds +
ż

L2

F ¨ n̂ ds +
ż

L3

F ¨ n̂ ds +
ż

L4

F ¨ n̂ ds

= 0 + 2 + (e´ 1) + 0 = e + 1

S-35: (a) Since m = 1, Newton’s law of motion gives

a(t) = v1(t) = F(t) = ̂´ sin t k̂

Integating gives
v(t) = t ̂ + cos t k̂ + c

for some constant vector c. Since v(0) = ı̂ıı + k̂, we have c = ı̂ıı so that

r1(t) = v(t) = ı̂ıı + t ̂ + cos t k̂
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Integating again gives

r(t) = t ı̂ıı +
t2

2
̂ + sin t k̂ + c

for some (new) constant vector c. Since r(0) = ̂, we have c = ̂ so that

r(t) = t ı̂ıı +
(

1 +
t2

2

)
̂ + sin t k̂

(b) The particle has x = π/2 when t = π/2 and then

r1 = r(π/2) =
π

2
ı̂ıı +
(

1 +
π2

8

)
̂ + k̂

(c) The work done between time t = 0 and time t = π/2 is

ż π/2

0
F(t) ¨ dr =

ż π/2

0
F(t) ¨ dr

dt
(t)dt =

ż π/2

0
[̂´ sin t k̂] ¨ [ı̂ıı + t ̂ + cos t k̂]dt

=

ż π/2

0
[t´ sin t cos t]dt =

[ t2

2
+

1
2

cos2 t
]π/2

0
=

π2

8
´ 1

2

S-36: (a) We can parametrize L by

r(t) =
(
x(t), y(t)

)
= (t, t),

with t running from 2 to 1. Using this parametrization,

ż

L
F ¨ dr =

ż 1

2
F
(
x(t), y(t)

) ¨ (x1(t), y1(t)) dt =
ż 1

2

(
3t , t´ 1

) ¨ (1, 1
)

dt

=

ż 1

2
(4t´ 1) dt = ´5

(b) First, we note that such a choice of path is even possible: if F were conservative, then
ş

c F ¨ dr would be ´5 for every path starting at (2, 2) and ending at (1, 1), because it
would be path independent. Since BF1

By = 3 and BF2
Bx = 1 ‰ BF1

By , by Theorem 2.4.6, F is not
path-independent.

Solution 1:
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x

y

(2, 2)

(1, 1)
L

(2, Y)(1, Y)

L1

L2

L3

Let’s try a family of polygonal paths CY that consist of

˝ the line segment L1 from (2, 2) to (2, Y) followed by
˝ the line segment L2 from (2, Y) to (1, Y) followed by
˝ the line segment L3 from (1, Y) to (1, 1).

This is a way of characterizing a family of alternate paths with only one parameter, Y. We
are hoping that the value of the integral

ş

CY
F ¨ dr depends on Y and that we can choose a

specific value of Y so as to make the value of the integral
ş

CY
F ¨ dr exactly 4.

Note that

˝ On L1, x = 2 is a constant (so that dx = 0) and y runs from 2 to Y.
˝ On L2, y = Y is a constant (so that dy = 0) and x runs from 2 to 1.
˝ On L3, x = 1 is a constant (so that dx = 0) and y runs from Y to 1

So,
ż

CY

F ¨ dr =
ż

L1

 

(3y dx + (x´ 1)dy
(

+

ż

L2

 

(3y dx + (x´ 1)dy
(

+

ż

L3

 

(3y dx + (x´ 1)dy
(

=

ż Y

2
dy +

ż 1

2
3Y dx +

ż 1

Y
0 dy

= (Y´ 2) + 3Y(1´ 2) = ´2Y´ 2

Since we want our integral to be 4, we set 4 = ´2Y´ 2, and find Y = ´3. That is, the
path D consisting of line segments from (2, 2) to (2,´3) to (1,´3) to (1, 1) gives us
ş

D F ¨ dr = 4.

Solution 2: Choosing three straight line segments was a convenient way to solve this,
but not the only way. To emphasize this point, we show that we also could have
considered (for example) the family of parabolas that pass through (2, 2) and (1, 1).

That is, we consider the family of functions y = ax2 + bx + c with 2 = 4a + 2b + c and
1 = a + b + c. Subtracting the equation a + b + c = 1 from the equation 4a + 2b + c = 2
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(in order to eliminate c) gives

(4a + 2b + c)´ (a + b + c) = (2)´ (1)
ùñ 3a + b = 1
ùñ b = 1´ 3a

Using b = 1´ 3a,

a + b + c = 1
ùñ a + (1´ 3a) + c = 1
ùñ c = 2a

So, the class of functions described by y = ax2 + (1´ 3a)x + 2a for some constant a are
parabolas that pass through (1, 1) and (2, 2).

x

y

(2, 2)

(1, 1)
L

y = ax2 + (1´ 3a)x + 2a

So, we consider paths of the form:

r(x) =
(
x, ax2 + (1´ 3a)x + 2a

)

F(r(x)) =
(
3ax2 + 3(1´ 3a)x + 6a, x´ 1

)

r1(x) =
(
1, 2ax + 1´ 3a

)

F(r(x)) ¨ r1(x) =
(
3ax2 + 3(1´ 3a)x + 6a

)
+
(
2ax2 + (1´ 3a)x´ 2ax + (3a´ 1)

)

= 5ax2 + (4´ 14a)x + (9a´ 1)

So, if C is a portion of this parabola from (2, 2) to (1, 1), then
ż

C
F ¨ dr =

ż 1

2

(
5ax2 + (4´ 14a)x + (9a´ 1)

)
dx

=

[
5a
3

x3 + (2´ 7a)x2 + (9a´ 1)x
]1

2

=
a
3
´ 5

Since we want our integral to have value 4, we set 4 = a
3 ´ 5, which yields a = 27.

If we choose C to be the path from (2, 2) to (1, 1) along the parabola 27x2 ´ 80x + 54, then
ş

C F ¨ dr = 4, as desired.
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S-37: Solution 1:
Let’s try a family of polygonal paths CY (sketched below) that consist of

˝ the line segment L1 from (0, 0) to (0, Y) followed by
˝ the line segment L2 from (0, Y) to (2, Y) followed by
˝ the line segment L3 from (2, Y) to (2, 0).

Here Y is a parameter. We are hoping that the value of the integral
ş

CY
F ¨ dr depends on

L1

L2

L3

(0, 0) (2, 0)

(0, Y ) (2, Y )

x

y

Y and that we can choose a specific value of Y so as to make the value of the integral
ş

CY
F ¨ dr exactly 8. Note that

˝ on L1, x = 0 is a constant (so that dx = 0) and y runs from 0 to Y and
˝ on L2, y = Y is a constant (so that dy = 0) and x runs from 0 to 2 and
˝ on L3, x = 2 is a constant (so that dx = 0) and y runs from Y to 0

Since F ¨ dr = (2y + 2)dx,

ż

CY

F ¨ dr =
ż

L1

(2y + 2)dx +

ż

L2

(2y + 2)dx +

ż

L3

(2y + 2)dx

= 0 +
ż 2

0
(2Y + 2)dx + 0

= 2(2Y + 2)

So Y = 1 does the job.

Solution 2:
There’s nothing magical about the form of the path from Solution 1. It’s just a path that’s
relatively easy to describe using one constant Y. To emphasize this point, we provide a
solution with an alternate path based on an ellipse.

A partial ellipse running from (0, 0) to (2, 2) can be described by
r(t) = (cos t + 1 , A sin t) for a constant A, with t running from π to 0. (To find this: we
centre a circle of radius 1 at the point (1, 0), then multiply its y-coordinate by A.)

x

y

A

(2, 0)
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In this case, F(r(t)) = (2A sin t + 2, 0) and r1(t) = (´ sin t, A cos t), so

F(r(t)) ¨ r1(t) = ´ sin t(2A sin 2 + 2) = ´A(2 sin2 t)´ 2 sin t = ´A(1´ cos 2t)´ 2 sin t
ż

F ¨ dr =
ż 0

π

(
A(cos 2t´ 1)´ 2 sin t

)
dt =

[
A
(

1
2

sin(2t)´ t
)
+ 2 cos t

]0

π

= Aπ + 4

Setting Aπ + 4 = 8, we find A = 4
π . So, the half-ellipse r(t) =

(
cos t + 1 , 4

π sin t
)

, with t
running from π to 0, is another path that gives

ş

C F ¨ dr = 8.

S-38: The vector field F is conservative, with

F =∇∇∇ϕ ϕ(x, y) = x +

ż y

0
ỹg(ỹ) dỹ

Consquently, for P = (x0, 0) and Q = (x1, 0),

ż

C
F ¨ dr = ϕ(Q)´ ϕ(P) = x1 +

ż 0

0
ỹg(ỹ) dỹ´ x0 ´

ż 0

0
ỹg(ỹ) dỹ

= x1 ´ x0

Thus
ˇ

ˇ

ˇ

ˇ

ż

C
F ¨ dr

ˇ

ˇ

ˇ

ˇ

= |x(Q)´ x(P)| = distance between P and Q

S-39:

˝ First notice that the vector field F̃(x, y, z) = z2 k̂ is conservative (with potential 1
3 z3),

so
ş

C1
F̃ ¨ dr =

ş

C2
F̃ ¨ dr for any two curves C1 and C2 from P1 to P2 (whether or not

they are on the surface S). Consequently, the statement “
ş

C1
F ¨ dr =

ş

C2
F ¨ dr” is

true if and only if the statement “
ş

C1
(F´ F̃) ¨ dr =

ş

C2
(F´ F̃) ¨ dr” is true. So we

may replace the vector field F with the vector field

G(x, y, z) = F(x, y, z)´ F̃(x, y, z) = (xz + axy2)ı̂ıı + yẑ

˝ We are to consider only curves on the surface S. For any such curve C, say
parametrized by r(t) with a ď t ď b, the integral

ż

C
G ¨ dr =

ż b

a
G
(
r(t)

) ¨ dr
dt

(t) dt

depends only on the values of G on the surface S. In particular, if another vector
field H obeys H(x, y, z) = G(x, y, z), for all points (x, y, z) on S, we have

ż

C
G ¨ dr =

ż b

a
G
(
r(t)

) ¨ dr
dt

(t) dt =
ż b

a
H
(
r(t)

) ¨ dr
dt

(t) dt =
ż

C
H ¨ dr
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So we may replace G with

H(x, y, z) = G(x, y, 2 + x2 ´ 3y2) =
[
x(2 + x2 ´ 3y2) + axy2]ı̂ıı + y(2 + x2 ´ 3y2)̂

= (2x + x3 ´ 3xy2 + axy2)ı̂ıı + (2y + yx2 ´ 3y3)̂

Note that H(x, y, z) is defined on all of R3. It just happens to not depend on z.
˝ The curl of H is

∇∇∇ˆH = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

2x + x3 ´ 3xy2 + axy2 2y + yx2 ´ 3y3 0




=
(
2xy´ [´6xy + 2axy]

)
k̂ = (8´ 2a)xy k̂

This is zero if a = 4. As H has continuous first order partial derivatives on all of R3,
Theorem 2.4.7 of the CLP-4 text tells us that, when a = 4, H is conservative and that
ş

C1
H ¨ dr =

ş

C2
H ¨ dr for any two curves C1 and C2 from P1 to P2

So a = 4 does the job.

S-40: (a) The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

(1 + ax2)ye3x2 ´ bxz cos(x2z) xe3x2
x2 cos(x2z)




= 0 ı̂ıı + [´bx cos(x2z) + bx3z sin(x2z)´ 2x cos(x2z) + 2x3z sin(x2z)] ̂

+ [e3x2
+ 6x2e3x2 ´ (1 + ax2)e3x2

] k̂

= [´(b + 2)x cos(x2z) + (b + 2)x3z sin(x2z)] ̂ + (6´ a)x2e3x2
k̂

(b) For F to be conservative it is necessary that∇∇∇ˆ F = 0. This is the case when b = ´2
and a = 6.

(c) For f to be a potential, when b = ´2 and a = 6, we need

B f
Bx

(x, y, z) = (1 + 6x2)ye3x2
+ 2xz cos(x2z)

B f
By

(x, y, z) = xe3x2

B f
Bz

(x, y, z) = x2 cos(x2z)

Integrating the second of these equations gives

f (x, y, z) = xye3x2
+ g(x, z)

Substituting this into the last equation gives

Bg
Bz

(x, z) = x2 cos(x2z)
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which integrates to
g(x, z) = sin(x2z) + h(x)

Finally, substituting f (x, y, z) = xye3x2
+ sin(x2z) + h(x) into the first equation gives

(1 + 6x2)ye3x2
+ 2xz cos(x2z) + h1(x) = (1 + 6x2)ye3x2

+ 2xz cos(x2z) or h1(x) = 0

So h(x) = C and hence f (x, y, z) = xye3x2
+ sin(x2z) + C works for any constant C.

(d) Note that the integral is
ş

C
(
Fa=6,b=´2 ´ 6x2ye3x2

ı̂ıı
) ¨ dr. So

ż

C

(
ye3x2

+ 2xz cos(x2z)
)

dx + xe3x2
dy + x2 cos(x2z)dz =

ż

C
∇∇∇ f ¨ dr´ 6

ż

C
x2ye3x2

dx

= f (1, 1, 1)´ f (0, 0, 0)´ 6
ż 1

0
t3e3t2

dt

= e3 + sin 1´ 1
3

ż 3

0
ueu du with u = 3t2, du = 6t dt

= e3 + sin 1´ 1
3

[
ueu ´ eu

]3

0
integration by parts

=
1
3

e3 + sin 1´ 1
3

S-41: (a) Parametrize C by x. Then

r(x) = x ı̂ıı + x2 ̂ + x3 k̂ 0 ď x ď 1

r1(x) = ı̂ıı + 2x ̂ + 3x2 k̂

F
(
r(x)

) ¨ r1(x) =
(
(x4 ´ x2) ı̂ıı + (x + x3) ̂ + x2 k̂

) ¨ (ı̂ıı + 2x ̂ + 3x2 k̂
)

= x4 ´ x2 + 2x2 + 2x4 + 3x4 = x2 + 6x4

ż

C
F ¨ dr =

ż 1

0

[
x2 + 6x4]dx =

[x3

3
+

6x5

5

]1

0
=

23
15

= 1.53̇

(b) Parametrize C by x as in part (a). Then

ds
dx

=

ˇ

ˇ

ˇ

ˇ

dr
dx

ˇ

ˇ

ˇ

ˇ

=
a

1 + 4x2 + 9x4

ρ(x, x2, x3)
ds
dx

=
(
8x + 36x3)a1 + 4x2 + 9x4

ż

C
ρ ds =

ż 1

0

(
8x + 36x3)a1 + 4x2 + 9x4 dx

Using the substitution u = 1 + 4x2 + 9x4, du = (8x + 36x3)dx:

=
2
3
[
1 + 4x2 + 9x4]3/2

ˇ

ˇ

ˇ

1

0

=
2
3
[
143/2 ´ 1

] « 34.26
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(c) Since F =∇∇∇ f with f = x sin y + yz + 1
2 z2,

ż

C
F ¨ dr = f (1, 1, 1)´ f (0, 0, 0) = sin 1 +

3
2
« 2.3415

The potential f was just guessed. Alternatively, it can be found by antidifferentiating:

B f
Bx

(x, y, z) = sin y ùñ f (x, y, z) = x sin y + ψ1(y, z)

B f
By

(x, y, z) = x cos y + z ùñ f (x, y, z) = x sin y + yz + ψ2(x, z)

B f
Bz

(x, y, z) = y + z ùñ f (x, y, z) = yz +
1
2

z2 + ψ3(x, y)

All together, f (x, y, z) = x sin y + yz + z2

2 + C works for any constant C.

S-42: (a) This field is conservative if and only if it passes the screening test∇∇∇ˆ F = 0.
That is, if and only if,

BF1

By
=
BF2

Bx
BF1

Bz
=
BF3

Bx
BF2

Bz
=
BF3

By

That is,

B
By

(Ax3y2z) =
B
Bx
(
z3 + Bx4yz

) ðñ 2Ax3yz = 4Bx3yz

B
Bz

(Ax3y2z) =
B
Bx
(
3yz2 ´ x4y2) ðñ Ax3y2 = ´4x3y2

B
Bz
(
z3 + Bx4yz

)
=
B
By
(
3yz2 ´ x4y2) ðñ 3z2 + Bx4y = 3z2 ´ 2x4y

Hence only A = ´4, B = ´2 works.

(b) When A = ´4, B = ´2

F = ´4x3y2z ı̂ıı +
(
z3 ´ 2x4yz

)
̂ +
(
3yz2 ´ x4y2) k̂

We find a potential function ϕ(x, y, z) for this F by antidifferentiating.

Bϕ

Bx
(x, y, z) = ´4x3y2z ùñ ϕ(x, y, z) = ´x4y2z + ψ1(y, z)

Bϕ

By
(x, y, z) = z3 ´ 2x4yz ùñ ϕ(x, y, z) = yz3 ´ x4y2z + ψ2(x, z)

Bϕ

Bz
(x, y, z) = 3yz2 ´ x4y2 ùñ ϕ(x, y, z) = yz3 ´ x4y2z + ψ3(x, y)

All together, ϕ(x, y, z) = ´x4y2z + yz3 + C with C being an arbitrary constant.

(c) I = ϕ(1,´1, 1)´ ϕ(0, 0, 0) = ´2.
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(d) Note that J =
ş

C G ¨ dr with

G = (z´ 4x3y2z)ı̂ıı + (z3 ´ x4yz)̂ + (3yz2 ´ x4y2)k̂

= F + z ı̂ıı + x4yz ̂

so that

J =
ż

C
(zı̂ıı + x4yz ̂ + F) ¨ dr = ´2 +

ż

C
(zı̂ıı + x4yz ̂) ¨ dr

Parametrize C by r(x) = x ı̂ıı´ x ̂ + x2 k̂ with 0 ď x ď 1. As dr
dx = ı̂ıı´ ̂ + 2x k̂

ż

C
(zı̂ıı + x4yz ̂) ¨ dr =

ż 1

0
(x2ı̂ıı´ x7 ̂) ¨ (ı̂ıı´ ̂ + 2x k̂

)
dx =

ż 1

0
(x2 + x7) dx =

1
3
+

1
8
=

11
24

ùñ J = ´2 +
11
24

= ´37
24
« ´1.5417

(e) T is a closed path and F is conservative, so
ş

T F ¨ dr = 0. Let T1 be the line segment
from (1, 0, 0) to (0, 1, 0), T2 be the line segment from (0, 1, 0) to (0, 0, 1) and T3 be the line
segment from (0, 0, 1) to (1, 0, 0).

x

y

z

T1

T2T3

(1,0,0)

(0,1,0)

(0,0,1)

On T1, z = 0, so
ş

T1
zı̂ıı ¨ dr = 0. On T2, x = 0, so ı̂ıı ¨ dr = dx = 0 and

ş

T2
zı̂ıı ¨ dr = 0.

Parametrize T3 by r(t) = tı̂ıı + (1´ t)k̂, 0 ď t ď 1. Then dr
dt = ı̂ıı´ k̂ and the z-coordinate of

the path is parametrized by 1´ t. So,

ż

T
(zı̂ıı + F) ¨ dr =

ż

T3

zı̂ıı ¨ dr =
ż 1

0

zı̂ıı
hkkikkj

(1´ t)ı̂ıı ¨
dr

hkkkkikkkkj

(ı̂ıı´ k̂) dt

=

ż 1

0
(1´ t) dt =

1
2

S-43: (a) By Newton’s law of motion

ma = F ùñ 2v1(t) =
(
4t , 6t2 , ´4t

) ùñ v1(t) =
(
2t , 3t2 , ´2t

)
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So

v(t) = v(0) +
ż t

0
v1(u)du = (0, 0, 0) +

ż t

0

(
2u , 3u2 , ´2u

)
du =

(
t2 , t3 , ´t2)

(b) From part (a), r1(t) = v(t) =
(
t2 , t3 , ´t2). So

r(t) = r(0) +
ż t

0
r1(u)du = (1, 2, 3) +

ż t

0

(
u2 , u3 , ´u2)du

= (1, 2, 3) +
(
t3/3 , t4/4 , ´t3/3

)
=

(
t3

3
+ 1 ,

t4

4
+ 2 , ´ t3

3
+ 3
)

(c) From parts (a) and (b)

|r1(t)| = ˇ

ˇt2(1, t,´1)
ˇ

ˇ = t2
a

2 + t2

and

r1(t)ˆ r2(t) = det




ı̂ıı ̂ k̂
t2 t3 ´t2

2t 3t2 ´2t




=
(´ 2t4 + 3t4) ı̂ıı´ (´ 2t3 + 2t3) ̂ +

(
3t4 ´ 2t4) k̂

= t4 ı̂ıı + t4 k̂

ùñ ˇ

ˇr1(t)ˆ r2(t)
ˇ

ˇ =
?

2 t4

The curvature is (see §1.5 of the CLP-4 text)

κ(t) =
|r1(t)ˆ r2(t)|
|r1(t)|3 =

?
2 t4

(
t2
?

2 + t2
)3

=

?
2

t2(2 + t2)3/2

(d) W =
ş

F ¨ dr:
ż t=T

t=0
F(t) ¨ dr =

ż T

0
F(t) ¨ dr

dt
(t)dt =

ż T

0

(
4t , 6t2 , ´4t

) ¨ (t2 , t3 , ´t2)dt

=

ż T

0

(
8t3 + 6t5)dt = 2T4 + T6

S-44: (a) For the specified curve

r(t) =
(4
?

2
3

t3/2,
4
?

2
3

t3/2, t(2´ t)
)

v(t) = r1(t) =
(
2
?

2t1/2, 2
?

2t1/2, 2´ 2t
)

|v| =
a

8t + 8t + 4´ 8t + 4t2 =
b

4(1 + 2t + t2) = 2|1 + t| = 2(1 + t)
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So the distance travelled is
ż 2

0
|v(t)|dt =

ż 2

0
2(1 + t)dt = 2

[
t +

t2

2

]2

0
= 8

(b) As

v(t) = r1(t) =
(
2
?

2t1/2, 2
?

2t1/2, 2´ 2t
)

v(1) = 2
?

2
(
1, 1, 0

)

a(t) = v1(t) =
(?

2t´1/2,
?

2t´1/2,´2
)

a(1) =
?

2
(
1, 1,´

?
2
)

v(1)ˆ a(1) = 4
(´

?
2,
?

2, 0
) |v(1)| = 4

the curvature

κ(1) =
|v(1)ˆ a(1)|
|v(1)|3 =

8
43 =

1
8

(c) G = ∇ϕ with ϕ(x, y, z) = ´Mgz, so that gravity is conservative. The work done is

ϕ
(
r(2)

)´ ϕ
(
r(0)

)
= ϕ

(
16/3 , 16/3 , 0

)´ ϕ(0, 0, 0) = 0

Friction is not conservative, so we have to compute the work long hand.
ż 2

0
F ¨ dr =

ż 2

0
F(t) ¨ dr

dt
(t)dt = ´

ż 2

0
|v(t)|2v(t) ¨ v(t)dt = ´

ż 2

0
|v(t)|4 dt

= ´24
ż 2

0
(1 + t)4 dt = ´16

5
(1 + t)5

ˇ

ˇ

ˇ

2

0

= ´16
5
(35 ´ 1) « ´774.4

(d) Solution 1: We know, from Theorem 1.3.3.c in the text, that

a(t) =
d2s
dt2 T̂ + κ

(ds
dt

)2
N̂

We have also been told that, at the apex, N̂ = ´k̂ and that ds
dt (t) = 3 for all t. So d2s

dt2 = 0.
As κ = 1

8 at the apex

a(1) = 0T̂ +
1
8
(
3
)2
(´k̂) = ´9

8
k̂

Solution 2: The bird follows the parametrized path

r(u) =
(

4
?

2
3

u3/2,
4
?

2
3

u3/2, u(2´ u)
)

This is the same path as the plane, but the parameter u is not time. Let’s denote by R(t)
the position of the bird at time t. At time t the bird is at some point on the parametrized
path, so there is some u(t) with

R(t) = r
(
u(t)

)
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We saw in part (a) that
ˇ

ˇ

dr
du

ˇ

ˇ = 2(1 + u). Since the bird always has speed 3,

3 =
ˇ

ˇ

ˇ

dR
dt

(t)
ˇ

ˇ

ˇ
=

ˇ

ˇ

ˇ

dr
du

(u(t))
du
dt

ˇ

ˇ

ˇ
= 2

(
1 + u(t)

)du
dt

ùñ du
dt

=
3

2(1 + u(t))
ùñ d2u

dt2 = ´ 3
2(1 + u(t))2

du
dt

= ´ 9
4(1 + u(t))3

At the apex u = 1 so that du
dt = 3

4 and d2u
dt2 = ´ 9

32 . The bird’s acceleration is

d2R
dt2 (t) =

d
dt

(dR
dt

(t)
)
=

d
dt

(dr
du

(u(t))
du
dt

(t)
)
=

d2r
du2

(du
dt

)2
+

dr
du

d2u
dt2

From part (a)

dr
du

=
(
2
?

2u1/2, 2
?

2u1/2, 2´ 2u
)

d2r
du2 =

(?
2u´1/2,

?
2u´1/2,´2

)

At the apex, when u = 1,

dr
du

=
(
2
?

2, 2
?

2, 0
)

d2r
du2 =

(?
2,
?

2,´2
)

and the acceleration is

d2R
dt2 =

d2r
du2

(du
dt

)2
+

dr
du

d2u
dt2 =

(?
2,
?

2,´2
)(3

4

)2
+
(
2
?

2, 2
?

2, 0
)(´ 9

32

)

=
(

0, 0,´9
8

)

Solutions to Exercises 3.1 — Jump to TABLE OF CONTENTS

S-1: This parametrization is almost trivial. We know it will have the form
r(x, y) = ψ1(x, y)ı̂ıı + ψ2(x, y)̂ + ψ3(x, y)k̂ where ψ1 gives the x-component (i.e. x), ψ2
gives the y-component (i.e. y), and ψ3 gives the z-component (i.e. ex+1 + xy). So,
r(x, y) = xı̂ıı + ŷ + (ex+1 + xy)k̂

S-2: Our parametrization is

x(u, v) = u + v

y(u, v) = u2 + v2

z(u, v) = u´ v
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• Adding x(u, v) and z(u, v) gives x(u, v) + z(u, v) = 2u.

• Subtracting z(u, v) from x(u, v) gives x(u, v)´ z(u, v) = 2v.

So u = 1
2

(
x(u, v) + z(u, v)

)
and v = 1

2

(
x(u, v)´ z(u, v)

)
. So on our surface

y(u, v) = u2 + v2 =
1
4
(
x(u, v) + z(u, v)

)2
+

1
4
(
x(u, v)´ z(u, v)

)2

=
1
2

x(u, v)2 +
1
2

z(u, v)2

All points of our surface lie on 2y = x2 + z2. This is a parabolic bowl:

˝ no points have y ă 0 and
˝ the y = Y (with Y ą 0) cross-section is the circle x2 + z2 = 2Y, y = Y
˝ the x = 0 cross-section is the parabola 2y = z2, x = 0
˝ the z = 0 cross-section is the parabola 2y = x2, z = 0

z

y

x

S-3: Note that, since x2 + y2 = 1 + 2z2 on S, the condition z ě 1 is equivalent to
x2 + y2 ě 3, z ě 0. So the hyperboloid is
 

(x, y, z)
ˇ

ˇ x2 + y2 = 1 + 2z2, 3 ď x2 + y2 ď 9, z ě 0
(

.

(a) No. Under this parametrization, the condition 3 ď x2 + y2 ď 9 is 3 ď u2 + v2 ď 9, not
2 ď u2 + v2 ď 9.

(b) Yes. Under this parametrization, x = u sin v, y = ´u cos v and z =
b

u2

2 ´ 1
2 . So

˝ x2 + y2 ´ 2z2 = u2 ´ 2
(

u2

2 ´ 1
2

)
= 1, as desired.

˝ The condition x2 + y2 ď 9 is equivalent to u ď 3, since u ě 0.
˝ The condition x2 + y2 ě 3 is equivalent to u ě ?3, since u ě 0.

˝ z =
b

u2

2 ´ 1
2 ě 0

(c) Yes. Under this parametrization, x =
?

1 + 2v2 cos u, y =
?

1 + 2v2 sin u and z = v. So

˝ x2 + y2 ´ 2z2 = 1 + 2v2 ´ 2v2 = 1, as desired.
˝ The condition x2 + y2 ď 9 is equivalent to 1 + 2v2 ď 9, which is equivalent to v ď 2,

since v ě 0.
˝ The condition x2 + y2 ě 3 is equivalent to 1 + 2v2 ě 3, which is equivalent to v ě 1,

since v ě 0.
˝ z = v ě 0

(d) Yes. Under this parametrization, x =
?

1 + u sin v, y =
?

1 + u cos v and z =
?

u/2. So
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˝ x2 + y2 ´ 2z2 = 1 + u´ 2(u/2) = 1, as desired.
˝ The condition x2 + y2 ď 9 is equivalent to 1 + u ď 9, which is equivalent to u ď 8.
˝ The condition x2 + y2 ě 3 is equivalent to 1 + u ě 3, which is equivalent to u ě 2.
˝ z =

?
u/2 ě 0

(e) No. Under this parametrization, x =
?

u cos v, y = ´?u sin v and z =
a

(u + 1)/2. So

˝ x2 + y2 ´ 2z2 = u´ 2(u + 1)/2 = ´1, not +1

S-4: (a) No. z = sin φ sin θ is negative when 0 ă φ ď π
4 , π ă θ ă 2π.

(b) Yes. Note that x2 +
(´ y

)2
+
(a

2´ x2 ´ y2
)2

= 2 and that, for x2 + y2 ď 1, we have
both x2 + (´y)2 ď 1 and

a

2´ x2 ´ y2 ě 0.

(c) No. (u sin θ)2 + (u cos θ)2 = u2 ą 1 for 1 ă u ď 2. Also
?

2´ u2 is not defined for?
2 ă u ď 2.

(d) Yes. Note that

˝ (?2 sin φ cos θ
)2

+
(?

2 sin φ sin θ
)2

+
(?

2 cos φ
)2

= 2
˝ For 0 ď φ ď π

4 , we have z =
?

2 cos φ ą 0.
˝ As φ runs from 0 to π

4 , r(φ) =
?

2 sin φ runs from 0 to 1, so that(
x = r(φ) cos θ , y = r(φ) sin θ

)
covers all of x2 + y2 ď 1 as φ runs from 0 to π

4 and θ
runs from 0 to 2π.

(e) Yes. Note that

˝ (´?2´ z2 sin φ
)2

+
(?

2´ z2 cos φ
)2

+
(
z
)2

= 2
˝ For 1 ď z ď ?2, we have obviously have z ą 0.
˝ As z runs from 1 to

?
2, r(z) =

?
2´ z2 runs from 1 to 0, so that(

x = ´r(z) sin φ , y = r(z) cos φ
)

covers all of x2 + y2 ď 1 as z runs from 1 to
?

2
and φ runs from 0 to 2π.

S-5: (a) No. When u = v = 0, z = 4 is not between 0 and 1.

(b) Yes. Note that when x =
?

4´ u cos v, y =
?

4´ u sin v and z = u with 0 ď u ď 1,
0 ď v ď 2π,

˝ z + x2 + y2 = 4
˝ 0 ď z = u ď 1
˝ For each fixed z = u between 0 and 1, (x, y) runs once around the circle

x2 + y2 = 4´ z = 4´ u as v runs from 0 to 2π.

(c) Yes. Note that when x = u cos v, y = u sin v and z = 4´ u2, with
?

3 ď u ď 2,
0 ď v ď 2π

˝ z + x2 + y2 = 4
˝ 0 ď z = 4´ u2 ď 1
˝ For each fixed z = 4´ u2 between 0 and 1, (x, y) runs once around the circle

x2 + y2 = 4´ z = u2 as v runs from 0 to 2π.
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S-6: First note that,

˝ for A, B and C, r(θ, φ) = x(θ, φ) ı̂ıı + y(θ, φ) ̂ + z(θ, φ) k̂ obeys

x(θ, φ)2 + y(θ, φ)2 + z(θ, φ)2 = 4

and so lies on S1
˝ for D, E and F, r(θ, z) = x(θ, z) ı̂ıı + y(θ, z) ̂ + z(θ, z) k̂ obeys

x(θ, z)2 + y(θ, z)2 = 4´ z(θ, z)2

and so lies on S1
˝ for G, H and I, r(θ, z) = x(θ, z) ı̂ıı + y(θ, z) ̂ + z(θ, z) k̂ obeys

x(θ, z)2 + y(θ, z)2 = z(θ, z)2

and so lies on S3
˝ for J, K and L, r(x, y) = x(x, y) ı̂ıı + y(x, y) ̂ + z(x, y) k̂ obeys

x(x, y)2 + y(x, y)2 = z(x, y)2

and so lies on S3

(a) To get a part of S1, we need to use one of the parametrizations A, B, C, D, E, F. In the
cases of A, B, C, for r(θ, φ) = x(θ, φ) ı̂ıı + y(θ, φ) ̂ + z(θ, φ) k̂ to lie inside S2 we need
(recalling that all points of S1 have z(θ, φ) ě 0 and hence 0 ď φ ď π/2)

x(θ, φ)2 + y(θ, φ)2 ď 1 ðñ 4 sin2 φ ď 1 ðñ sin φ ď 1
2
ðñ 0 ď φ ď π

6

In the cases of D, E, F, for r(θ, z) = x(θ, z) ı̂ıı + y(θ, z) ̂ + z(θ, z) k̂ to lie inside S2 we need
(recalling that all points of S1 have z(θ, z) ě 0 and hence z ě 0)

x(θ, z)2 + y(θ, z)2 ď 1 ðñ 4´ z2 ď 1 ðñ z ě ?3

So parametrizations A and F work.

(b) To get a part of S1, we need to use one of the parametrizations A, B, C, D, E, F. In the
cases of A, B, C, for r(θ, φ) = x(θ, φ) ı̂ıı + y(θ, φ) ̂ + z(θ, φ) k̂ to lie inside S3 we need
(recalling that all points of S1 have z(θ, φ) ě 0 and hence 0 ď φ ď π/2)

x(θ, φ)2 + y(θ, φ)2 ď z(θ, φ)2 ðñ 4 sin2 φ ď 4 cos2 φ ðñ tan φ ď 1 ðñ 0 ď φ ď π

4

In the cases of D, E, F, for r(θ, z) = x(θ, z) ı̂ıı + y(θ, z) ̂ + z(θ, z) k̂ to lie inside S3 we need
(recalling that all points of S1 have z(θ, z) ě 0 and hence z ě 0)

x(θ, z)2 + y(θ, z)2 ď z(θ, z)2 ðñ 4´ z2 ď z2 ðñ z ě
?

2

So parametrizations B and E work.
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(c) To get a part of S3, we need to use one of the parametrizations G, H, I, J, K, L. In the
cases of G, H, I, for r(θ, z) = x(θ, z) ı̂ıı + y(θ, z) ̂ + z(θ, z) k̂ to lie inside S2 we need
(recalling that all points of S3 have z ě 0)

x(θ, z)2 + y(θ, z)2 ď 1 ðñ z2 ď 1 ðñ 0 ď z ď 1

In the cases of J, K, L, for r(x, y) = x(x, y) ı̂ıı + y(x, y) ̂ + z(x, y) k̂ to lie inside S3 we need

x(x, y)2 + y(x, y)2 ď 1 ðñ x2 + y2 ď 1

So parametrizations G and J work.

(d) To get a part of S3, we need to use one of the parametrizations G, H, I, J, K, L. In the
cases of G, H, I, for r(θ, z) = x(θ, z) ı̂ıı + y(θ, z) ̂ + z(θ, z) k̂ to lie inside S1 we need
(recalling that all points of S3 have z ě 0)

x(θ, z)2 + y(θ, z)2 + z(θ, z)2 ď 4 ðñ 2z2 ď 4 ðñ 0 ď z ď
?

2

In the cases of J, K, L, for r(x, y) = x(x, y) ı̂ıı + y(x, y) ̂ + z(x, y) k̂ to lie inside S3 we need

x(x, y)2 + y(x, y)2 + z(x, y)2 ď 4 ðñ 2x2 + 2y2 ď 4

So parametrizations H and L work.

S-7: (a) In the sketch below, the point (x, y, z) deviates from the centre (2, 2, 4) by sin θ

units in the k̂ direction, and by cos θ units in the
b

1?
2
(ı̂ıı + ̂) direction. So,

(x, y, z) = (2 + 1?
2

cos θ , 2 + 1?
2

cos θ , 4 + sin θ).

z

x

y

4

2

2

(2, 2, 4)

1?
2
(ı̂ıı + ̂)

(x, y, z)

θ

So, we can parametrize the circle as (x, y, z) = (2 + 1?
2

cos θ , 2 + 1?
2

cos θ , 4 + sin θ),
with 0 ď θ ď 2π.
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Remark: it’s easy to check that this equation satisfies the two properties we desire. Since
the x- and y coordinates match, it’s in the plane x = y. To check that it’s a circle centred at
(2, 2, 4), we note the distance from (x, y, z) to (2, 2, 4) is:

d =
b

(x´ 2)2 + (y´ 2)2 + (z´ 4)2 =

d(
1?
2

cos θ

)2

+

(
1?
2

cos θ

)2

+ (sin θ)2

=

c

1
2

cos2 θ +
1
2

cos2 θ + sin2 θ =
a

cos2 θ + sin2 θ = 1

So, our points all have distance one from the same point — that is, they lie on a circle of
radius 1.

(b) Consider a point (x, y, z) = (2 + 1?
2

cos θ , 2 + 1?
2

cos θ , 4 + sin θ), rotating φ radians
about the line x = y = 4.

r(t) = (4, 4, t)

(2, 2, 4)

(x, y, z) R
φ

The new position of the point has the same height, z = 4 + sin θ. Its distance from the
line x = y = 4 is also preserved: R =

a

(x´ 4)2 + (y´ 4)2 + (z´ z)2 =
b

( 1?
2

cos θ ´ 2)2 + ( 1?
2

cos θ ´ 2)2 + 0) = cos θ ´ 2
?

2.

The circle traced out by a point (x, y, z) = (2 + 1?
2

cos θ, 2 + 1?
2

cos θ, 4 + sin θ) on the

circle is centred at (4, 4, z) with radius
?

2(4´ x), so it has equation
x = 4 +

?
2(2´?2 cos θ) cos φ, y = 4 +

?
2(2´?2 cos θ) sin φ, z = 4 sin θ.

Solutions to Exercises 3.2 — Jump to TABLE OF CONTENTS

S-1: Write F(x, y, z) = x2 + y2 + (z´ 1)2´ 1 and G(x, y, z) = x2 + y2 + (z + 1)2´ 1. Let S1
denote the surface F(x, y, z) = 0 and S2 denote the surface G(x, y, z) = 0. First note that
F(0, 0, 0) = G(0, 0, 0) = 0 so that the point (0, 0, 0) lies on both S1 and S2. The gradients
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of F and G are

∇∇∇F(x, y, z) =
(BF
Bx

(x, y, z) ,
BF
By

(x, y, z) ,
BF
Bz

(x, y, z)
)
= (2x , 2y , 2(z´ 1))

∇∇∇G(x, y, z) =
(BG
Bx

(x, y, z) ,
BG
By

(x, y, z) ,
BG
Bz

(x, y, z)
)
= (2x , 2y , 2(z + 1))

In particular,
∇∇∇F(0, 0, 0) = (0, 0,´2) ∇∇∇G(0, 0, 0) = (0, 0, 2)

so that the vector k̂ = ´1
2∇∇∇F(0, 0, 0) = 1

2∇∇∇G(0, 0, 0) is normal to both surfaces at (0, 0, 0).
So the tangent plane to both S1 and S2 at (0, 0, 0) is

k̂ ¨ (x´ 0, y´ 0, z´ 0) = 0 or z = 0

Denote by P the plane z = 0. Thus S1 is tangent to P at (0, 0, 0) and P is tangent to S2 at
(0, 0, 0). So it is reasonable to say that S1 and S2 are tangent at (0, 0, 0).

S-2: Denote by S the surface G(x, y, z) = 0 and by C the parametrized curve
r(t) =

(
x(t), y(t), z(t)

)
. To start, we’ll find the tangent plane to S at r0 and the tangent

line to C at r0.

• The tangent vector to C at r0 is (x1(t0) , y1(t0) , z1(t0)), so the parametric equations
for the tangent line to C at r0 are

x´ x0 = tx1(t0) y´ y0 = tx1(t0) z´ z0 = tx1(t0) (E1)

• The gradient
(
BG
Bx
(
x0 , y0 , z0

)
, BG
By
(
x0 , y0 , z0

)
, BG
Bz
(
x0 , y0 , z0

))
is a normal vector

to the surface S at (x0, y0, z0). So the tangent plane to the surface S at (x0, y0, z0) is
(BG
Bx
(
x0 , y0 , z0

)
,
BG
By
(
x0 , y0 , z0

)
,
BG
Bz
(
x0 , y0 , z0

)) ¨ (x´ x0 , y´ y0 , z´ z0) = 0

or
BG
Bx
(
x0 , y0 , z0

)
(x´ x0) +

BG
By
(
x0 , y0 , z0

)
(y´ y0) +

BG
Bz
(
x0 , y0 , z0

)
(z´ z0) = 0

(E2)

Next, we’ll show that the tangent vector (x1(t0) , y1(t0) , z1(t0)) to C at r0 and the normal
vector

(
BG
Bx
(
x0 , y0 , z0

)
, BG
By
(
x0 , y0 , z0

)
, BG
Bz
(
x0 , y0 , z0

))
to S at r0 are perpendicular to

each other. To do so, we observe that, for every t, the point
(
x(t), y(t), z(t)

)
lies on the

surface G(x, y, z) = 0 and so obeys

G
(
x(t), y(t), z(t)

)
= 0

Differentiating this equation with respect to t gives, by the chain rule,

0 =
d
dt

G
(
x(t), y(t), z(t)

)

=
BG
Bx
(
x(t) , y(t) , z(t)

)
x1(t) +

BG
By
(
x(t) , y(t) , z(t)

)
y1(t) +

BG
Bz
(
x(t) , y(t) , z(t)

)
z1(t)
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Then setting t = t0 gives

BG
Bx
(
x0 , y0 , z0

)
x1(t0) +

BG
By
(
x0 , y0 , z0

)
y1(t0) +

BG
Bz
(
x0 , y0 , z0

)
z1(t0) = 0 (E3)

Finally, we are in a position to show that if (x, y, z) is any point on the tangent line to C at
r0, then (x, y, z) is also on the tangent plane to S at r0. As (x, y, z) is on the tangent line to
C at r0 then there is a t such that, by (E1),

BG
Bx
(
x0 , y0 , z0

) tx´ x0u+ BG
By
(
x0 , y0 , z0

) ty´ y0u+ BG
Bz
(
x0 , y0 , z0

) tz´ z0u

=
BG
Bx
(
x0 , y0 , z0

)  
t x1(t0)

(

+
BG
By
(
x0 , y0 , z0

)  
t y1(t0)

(

+
BG
Bz
(
x0 , y0 , z0

)  
t z1(t0)

(

= t
[BG
Bx
(
x0 , y0 , z0

)
x1(t0) +

BG
By
(
x0 , y0 , z0

)
y1(t0) +

BG
Bz
(
x0 , y0 , z0

)
z1(t0)

]
= 0

by (E3). That is, (x, y, z) obeys the equation, (E2), of the tangent plane to S at r0 and so is
on that tangent plane. So the tangent line to C at r0 is contained in the tangent plane to S
at r0.

S-3: By part (b) of Theorem 3.2.1 in the CLP-4 text,

n = ´ fx(x0, y0) ı̂ıı´ fy(x0, y0) ̂ + k̂

is normal to the surface at (x0, y0, z0). So the parametric equations of the normal line are

(x´ x0 , y´ y0 , z´ z0) = t
(´ fx(x0, y0) , ´ fy(x0, y0) , 1

)
or

x = x0 ´ t fx(x0, y0) y = y0 ´ t fy(x0, y0) z = f (x0, y0) + t

S-4: Use S1 to denote the surface F(x, y, z) = 0, S2 to denote the surface G(x, y, z) = 0 and
C to denote the curve of intersection of S1 and S2.

• Since C is contained in S1, the tangent line to C at (x0, y0, z0) is contained in the
tangent plane to S1 at (x0, y0, z0), by Q[2]. In particular, any tangent vector, t, to C at
(x0, y0, z0) must be perpendicular to∇∇∇F(x0, y0, z0), the normal vector to S1 at
(x0, y0, z0).

• Since C is contained in S2, the tangent line to C at (x0, y0, z0) is contained in the
tangent plane to S2 at (x0, y0, z0), by Q[2]. In particular, any tangent vector, t, to C at
(x0, y0, z0) must be perpendicular to∇∇∇G(x0, y0, z0), the normal vector to S2 at
(x0, y0, z0).

So any tangent vector to C at (x0, y0, z0) must be perpendiular to both∇∇∇F(x0, y0, z0) and
∇∇∇G(x0, y0, z0). One such tangent vector is

t =∇∇∇F(x0, y0, z0)ˆ∇∇∇G(x0, y0, z0)
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(Because the vectors∇∇∇F(x0, y0, z0) and∇∇∇G(x0, y0, z0) are nonzero and not parallel, t is
nonzero.) So the normal plane in question passes through (x0, y0, z0) and has normal
vector n = t. Consquently, the normal plane is

n ¨ (x´ x0 , y´ y0 , z´ z0) = 0 where n = t =∇∇∇F(x0, y0, z0)ˆ∇∇∇G(x0, y0, z0)

S-5: Use S1 to denote the surface z = f (x, y), S2 to denote the surface z = g(x, y) and C to
denote the curve of intersection of S1 and S2.

• Since C is contained in S1, the tangent line to C at (x0, y0, z0) is contained in the
tangent plane to S1 at (x0, y0, z0), by Q[2]. In particular, any tangent vector, t, to C at
(x0, y0, z0) must be perpendicular to ´ fx(x0, y0) ı̂ıı´ fy(x0, y0) ̂ + k̂, the normal
vector to S1 at (x0, y0, z0). (See part (b) of Theorem 3.2.1 in the CLP-4 text.)

• Since C is contained in S2, the tangent line to C at (x0, y0, z0) is contained in the
tangent plane to S2 at (x0, y0, z0), by Q[2]. In particular, any tangent vector, t, to C at
(x0, y0, z0) must be perpendicular to ´gx(x0, y0) ı̂ıı´ gy(x0, y0) ̂ + k̂, the normal
vector to S2 at (x0, y0, z0).

So any tangent vector to C at (x0, y0, z0) must be perpendicular to both of the vectors
´ fx(x0, y0) ı̂ıı´ fy(x0, y0) ̂ + k̂ and ´gx(x0, y0) ı̂ıı´ gy(x0, y0) ̂ + k̂. One such tangent vector
is

t =
[´ fx(x0, y0) ı̂ıı´ fy(x0, y0) ̂ + k̂

]ˆ [´ gx(x0, y0) ı̂ıı´ gy(x0, y0) ̂ + k̂
]

= det




ı̂ıı ̂ k̂
´ fx(x0, y0) ´ fy(x0, y0) 1
´gx(x0, y0) ´gy(x0, y0) 1




=
(

gy(x0, y0)´ fy(x0, y0) , fx(x0, y0)´ gx(x0, y0) , fx(x0, y0)gy(x0, y0)´ fy(x0, y0)gx(x0, y0)
)

So the tangent line in question passes through (x0, y0, z0) and has direction vector d = t.
Consquently, the tangent line is

(x´ x0 , y´ y0 , z´ z0) = t d

or

x = x0 + t
[
gy(x0, y0)´ fy(x0, y0)

]

y = y0 + t
[

fx(x0, y0)´ gx(x0, y0)
]

z = z0 + t
[

fx(x0, y0)gy(x0, y0)´ fy(x0, y0)gx(x0, y0)
]

S-6: We are going to use part (b) of Theorem 3.2.1 in the CLP-4 text. To do so, we need the
first order derivatives of f (x, y) at (x, y) = (´1, 1). So we find them first.

fx(x, y) =
2xy

x4 + 2y2 ´
x2y(4x3)

(x4 + 2y2)
2 fx(´1, 1) = ´2

3
+

4
32 = ´2

9

fy(x, y) =
x2

x4 + 2y2 ´
x2y(4y)

(x4 + 2y2)
2 fy(´1, 1) =

1
3
´ 4

32 = ´1
9
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So (2/9 , 1/9 , 1) is a normal vector to the surface at (´1, 1, 1/3) and the tangent plane is

2
9
(x + 1) +

1
9
(y´ 1) +

(
z´ 1

3

)
= 0

2
9

x +
1
9

y + z = ´2
9
+

1
9
+

1
3
=

2
9

or 2x + y + 9z = 2.

S-7: The equation of the given surface is of the form G(x, y, z) = 9 with
G(x, y, z) = 27?

x2+y2+z2+3
. So, by part (c) of Theorem 3.2.1 in the CLP-4 text, a normal

vector to the surface at (2, 1, 1) is

∇∇∇G(2, 1, 1) = ´1
2

27
(x2 + y2 + z2 + 3)3/2

(
2x , 2y , 2z

)ˇˇ
ˇ

ˇ

(x,y,z)=(2,1,1)

= ´(2 , 1 , 1)

and the equation of the tangent plane is

´(2 , 1 , 1) ¨ (x´ 2 , y´ 1 , z´ 1) = 0 or 2x + y + z = 6

S-8: We may use G(x, y, z) = xyz2 + y2z3 ´ 3´ x2 = 0 as an equation for the surface.
Note that (´1, 1, 2) really is on the surface since

G(´1, 1, 2) = (´1)(1)(2)2 + (1)2(2)3 ´ 3´ (´1)2 = ´4 + 8´ 3´ 1 = 0

By part (c) of Theorem 3.2.1 in the CLP-4 text, since

Gx(x, y, z) = yz2 ´ 2x Gx(´1, 1, 2) = 6

Gy(x, y, z) = xz2 + 2yz3 Gy(´1, 1, 2) = 12

Gz(x, y, z) = 2xyz + 3y2z2 Gz(´1, 1, 2) = 8

one normal vector to the surface at (´1, 1, 2) is∇∇∇G(´1, 1, 2) = (6 , 12 , 8) and an
equation of the tangent plane to the surface at (´1, 1, 2) is

(6 , 12 , 8) ¨ (x + 1 , y´ 1 , z´ 2) = 0 or 6x + 12y + 8z = 22

or
z = ´3

4
x´ 3

2
y +

11
4

S-9: (a) The surface is G(x, y, z) = z´ x2 + 2xy´ y2 = 0. When x = a and y = 2a and
(x, y, z) is on the surface, we have z = a2 ´ 2(a)(2a) + (2a)2 = a2. So, by part (c) of
Theorem 3.2.1 in the CLP-4 text, a normal vector to this surface at (a, 2a, a2) is

∇∇∇G(a, 2a, a2) = (´2x + 2y , 2x´ 2y , 1)
ˇ

ˇ

ˇ

(x,y,z)=(a,2a,a2)
= (2a , ´2a , 1)
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and the equation of the tangent plane is

(2a , ´2a , 1) ¨ (x´ a , y´ 2a , z´ a2) = 0 or 2ax´ 2ay + z = ´a2

(b) The two planes are parallel when their two normal vectors, namely (2a , ´2a , 1) and
(1 , ´1 , 1), are parallel. This is the case if and only if a = 1

2 .

S-10: A plane is determined by one point on the plane and one vector perpendicular to
the plane. We are told that (8, 1, 5) is on the plane, so it suffices to find a normal vector.
The given surface is parametrized by

r(u, v) = 2u2 ı̂ıı + v2 ̂ + (u2 + v3) k̂

so the vectors

Br
Bu

(u, v) =
(
4u , 0 , 2u

)

Br
Bv

(u, v) =
(
0 , 2v , 3v2)

are tangent to S at r(u, v). Note that r(2, 1) = (8, 1, 5). So

Br
Bu

(2, 1) =
(
8 , 0 , 4

)

Br
Bv

(2, 1) =
(
0 , 2 , 3

)

are tangent to S at r(2, 1) = (8, 1, 5) and

Br
Bu

(2, 1)ˆ Br
Bv

(2, 1) =
(
8 , 0 , 4

)ˆ (0 , 2 , 3
)

= det




ı̂ıı ̂ k̂
8 0 4
0 2 3




=
(´ 8 , ´24 , 16)

or 1
´8

(´ 8 , ´24 , 16) =
(
1 , 3 , ´2) is normal to S at (8, 1, 5). So the tangent plane is

(1, 3,´2) ¨  (x, y, z)´ (8, 1, 5)
(

= 0 or x + 3y´ 2z = 1

S-11: To find the tangent plane we have to find a normal vector to the surface at (2, 2, 0).
Since

Br
Bu

=
(
1 , 2u , 1

)

Br
Bv

=
(
1 , 2v , ´1

)
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a normal vector to the surface at r(u, v) is

Br
Bu
ˆ Br
Bv

= det




ı̂ıı ̂ k̂
1 2u 1
1 2v ´1




=
(´ 2u´ 2v , 2 , 2v´ 2u

)

As r(u, v) = (2, 2, 0) when (the x-coordinate) u + v = 2 and (the z-coordinate) u´ v = 0,
i.e when u = v = 1, a normal vector to the surface at (2, 2, 0) = r(1, 1) is

(´4, 2, 0) or (´2, 1, 0)

and the equation of the specified tangent plane is

´2(x´ 2) + (y´ 2) + 0z = 0 or y = 2x´ 2

S-12: The first order partial derivatives of f are

fx(x, y) = ´ 4xy

(x2 + y2)2 fx(´1, 2) =
8

25

fy(x, y) =
2

x2 + y2 ´
4y2

(x2 + y2)2 fy(´1, 2) =
2
5
´ 16

25
= ´ 6

25

So, by part (b) of Theorem 3.2.1 in the CLP-4 text, a normal vector to the surface at
(x, y) = (´1, 2) is ( 8

25 , ´ 6
25 , ´1). As f (´1, 2) = 4

5 , the tangent plane is

( 8
25

, ´ 6
25

, ´1
)
¨
(

x + 1 , y´ 2 , z´ 4
5

)
= 0 or

8
25

x´ 6
25

y´ z = ´8
5

and the normal line is

(x, y, z) =
(
´ 1, 2,

4
5

)
+ t
( 8

25
, ´ 6

25
, ´1

)

S-13: A normal vector to the surface x2 + 9y2 + 4z2 = 17 at the point (x, y, z) is
(2x , 18y , 8z). A normal vector to the plane x´ 8z = 0 is (1 , 0 , ´8). So we want
(2x , 18y , 8z) to be parallel to (1 , 0 , ´8), i.e. to be a nonzero constant times (1 , 0 , ´8).
This is the case whenever y = 0 and z = ´2x with x ‰ 0. In addition, we want (x, y, z) to
lie on the surface x2 + 9y2 + 4z2 = 17. So we want y = 0, z = ´2x and

17 = x2 + 9y2 + 4z2 = x2 + 4(´2x)2 = 17x2 ùñ x = ˘1

So the allowed points are ˘(1, 0,´2).
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S-14: The equation of S is of the form G(x, y, z) = x2 + 2y2 + 2y´ z = 1. So one normal
vector to S at the point (x0, y0, z0) is

∇∇∇G(x0, y0, z0) = 2x0 ı̂ıı + (4y0 + 2) ̂´ k̂

and the normal line to S at (x0, y0, z0) is

(x, y, z) = (x0, y0, z0) + t(2x0 , 4y0 + 2 , ´1)

For this normal line to pass through the origin, there must be a t with

(0, 0, 0) = (x0, y0, z0) + t(2x0 , 4y0 + 2 , ´1)

or

x0 + 2x0 t = 0 (E1)
y0 + (4y0 + 2)t = 0 (E2)

z0 ´ t = 0 (E3)

Equation (E3) forces t = z0. Substituting this into equations (E1) and (E2) gives

x0(1 + 2z0) = 0 (E1)
y0 + (4y0 + 2)z0 = 0 (E2)

The question specifies that x0 ‰ 0, so (E1) forces z0 = ´1
2 . Substituting z0 = ´1

2 into (E2)
gives

´y0 ´ 1 = 0 ùñ y0 = ´1

Finally x0 is determined by the requirement that (x0, y0, z0) must lie on S and so must
obey

z0 = x2
0 + 2y2

0 + 2y0 ´ 1 ùñ ´1
2
= x2

0 + 2(´1)2 + 2(´1)´ 1 ùñ x2
0 =

1
2

So the allowed points P are
( 1?

2
, ´1 , ´1

2

)
and

(´ 1?
2

, ´1 , ´1
2

)
.

S-15: Let (x0, y0, z0) be a point on the hyperboloid z2 = 4x2 + y2 ´ 1 where the tangent
plane is parallel to the plane 2x´ y + z = 0. A normal vector to the plane 2x´ y + z = 0
is (2,´1, 1). Because the hyperboloid is G(x, y, z) = 4x2 + y2 ´ z2 ´ 1 and
∇∇∇G(x, y, z) = (8x, 2y,´2z), a normal vector to the hyperboloid at (x0, y0, z0) is
∇∇∇G(x0, y0, z0) = (8x0, 2y0,´2z0). So (x0, y0, z0) satisfies the required conditions if and
only if there is a nonzero t obeying

(8x0, 2y0,´2z0) = t(2,´1, 1) and z2
0 = 4x2

0 + y2
0 ´ 1

ðñ x0 =
t
4

, y0 = z0 = ´ t
2

and z2
0 = 4x2

0 + y2
0 ´ 1

ðñ t2

4
=

t2

4
+

t2

4
´ 1 and x0 =

t
4

, y0 = z0 = ´ t
2

ðñ t = ˘2 (x0, y0, z0) = ˘(1
2 ,´1,´1

)

283



S-16: (a) A vector perpendicular to x2 + z2 = 10 at (1, 1, 3) is

∇∇∇(x2 + z2)
ˇ

ˇ

(1,1,3) = (2xı̂ıı + 2zk̂)
ˇ

ˇ

(1,1,3) = 2ı̂ıı + 6k̂ or
1
2
(2, 0, 6) = (1, 0, 3)

(b) A vector perpendicular to y2 + z2 = 10 at (1, 1, 3) is

∇∇∇(y2 + z2)
ˇ

ˇ

(1,1,3) = (2ŷ + 2zk̂)
ˇ

ˇ

(1,1,3) = 2̂ + 6k̂ or
1
2
(0, 2, 6) = (0, 1, 3)

A vector is tangent to the specified curve at the specified point if and only if it
perpendicular to both (1, 0, 3) and (0, 1, 3). One such vector is

(0, 1, 3)ˆ (1, 0, 3) = det




ı̂ıı ̂ k̂
0 1 3
1 0 3


 = (3, 3,´1)

(c) The specified tangent line passes through (1, 1, 3) and has direction vector (1, 1, 3) and
so has vector parametric equation

r(t) = (1, 1, 3) + t(3, 3,´1)

S-17: r(t) = (x(t) , y(t) , z(t)) intersects z3 + xyz´ 2 = 0 when

z(t)3 + x(t) y(t) z(t)´ 2 = 0 ðñ (
t2)3

+
(
t3)(t)

(
t2)´ 2 = 0 ðñ 2t6 = 2 ðñ t = 1

since t is required to be positive. The direction vector for the curve at t = 1 is

r1(1) = 3 ı̂ıı + ̂ + 2 k̂

A normal vector for the surface at r(1) = (1, 1, 1) is

∇∇∇(z3 + xyz)
ˇ

ˇ

(1,1,1) = [yzı̂ıı + xẑ + (3z2 + xy)k̂](1,1,1) = ı̂ıı + ̂ + 4k̂

The angle θ between the curve and the normal vector to the surface is determined by
ˇ

ˇ(3, 1, 2)
ˇ

ˇ

ˇ

ˇ(1, 1, 4)
ˇ

ˇ cos θ = (3, 1, 2) ¨ (1, 1, 4) ðñ
?

14
?

18 cos θ = 12

ðñ ?
7ˆ 36 cos θ = 12

ðñ cos θ =
2?
7

ðñ θ = 40.89˝

The angle between the curve and the surface is 90´ 40.89 = 49.11˝ (to two decimal
places).
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S-18: Let (x0, y0, z0) be any point on the surface. A vector normal to the surface at
(x0, y0, z0) is

∇∇∇
(

xye´(x2+y2)/2 ´ z
)ˇ
ˇ

ˇ

ˇ

(x0,y0,z0)

=
(

y0e´(x2
0+y2

0)/2 ´ x2
0y0e´(x2

0+y2
0)/2, x0e´(x2

0+y2
0)/2 ´ x0y2

0e´(x2
0+y2

0)/2,´1
)

The tangent plane to the surface at (x0, y0, z0) is horizontal if and only if this vector is
vertical, which is the case if and only if its x- and y-components are zero, which in turn is
the case if and only if

y0(1´ x2
0) = 0 and x0(1´ y2

0) = 0

ðñ  

y0 = 0 or x0 = 1 or x0 = ´1
(

and
 

x0 = 0 or y0 = 1 or y0 = ´1
(

ðñ (x0, y0) = (0, 0) or (1, 1) or (1,´1) or (´1, 1) or (´1,´1)

The values of z0 at these points are 0, e´1, ´e´1, ´e´1 and e´1, respectively. So the
horizontal tangent planes are z = 0, z = e´1 and z = ´e´1. At the highest and lowest
points of the surface, the tangent plane is horizontal. So the largest and smallest values of
z are e´1 and ´e´1, respectively.

Solutions to Exercises 3.3 — Jump to TABLE OF CONTENTS

S-1: (a) S is the part of the plane z = y tan θ that lies above the rectangle in the xy-plane
with vertices (0, 0), (a, 0), (0, b), (a, b). So S is the rectangle with vertices (0, 0, 0), (a, 0, 0),
(0, b, b tan θ), (a, b, b tan θ). So it has side lengths

|(a, 0, 0)´ (0, 0, 0)| = a

|(0, b, b tan θ)´ (0, 0, 0)| =
a

b2 + b2 tan2 θ

and hence area ab
a

1 + tan2 θ = ab sec θ.

(b) S is the part of the surface z = f (x, y) with f (x, y) = y tan θ and with (x, y) running
over

D =
 

(x, y)
ˇ

ˇ 0 ď x ď a, 0 ď y ď b
(

Hence by (3.3.2) in the CLP-4 text

dS =
b

1 + fx(x, y)2 + fy(x, y)2 dx dy =
a

1 + 02 + tan2 θ dx dy

and

Area(S) =
ĳ

S

dS =

ĳ

D

a

1 + tan2 θ dx dy

=

ż a

0
dx

ż b

0
dy

a

1 + tan2 θ

= ab
a

1 + tan2 θ = ab sec θ
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S-2: Note that all three vertices (a, 0, 0), (0, b, 0) and (0, 0, c) lie on the plane
x
a +

y
b +

z
c = 1. So the triangle is part of that plane.

Method 1. S is the part of the surface z = f (x, y) with f (x, y) = c
(
1´ x

a ´ y
b
)

and with
(x, y) running over the triangle Txy in the xy-plane with vertices (0, 0, 0) (a, 0, 0) and
(0, b, 0). Hence by the first part of (3.3.2) in the CLP-4 text,

Area(S) =
ĳ

Txy

b

1 + fx(x, y)2 + fy(x, y)2 dx dy

=

ĳ

Txy

c

1 +
c2

a2 +
c2

b2 dx dy

=

c

1 +
c2

a2 +
c2

b2 A(Txy)

where A(Txy) is the area of Txy. Since the triangle Txy has base a and height b (see the
figure below), it has area 1

2 ab. So

Area(S) =
1
2

c

1 +
c2

a2 +
c2

b2 ab =
1
2

a

a2b2 + a2c2 + b2c2

y

z

x

Txy

pa, 0, 0q

p0, b, 0q

p0, 0, cq

Method 2. S is the part of the surface x = g(y, z) with g(y, z) = a
(
1´ y

b ´ z
c
)

and with
(y, z) running over the triangle Tyz in the yz-plane with vertices (0, 0, 0) (0, b, 0) and
(0, 0, c). Hence by the second part of (3.3.2) in the CLP-4 text,

Area(S) =
ĳ

Tyz

b

1 + gy(y, z)2 + gz(y, z)2 dy dz

=

ĳ

Tyz

c

1 +
a2

b2 +
a2

c2 dy dz

=

c

1 +
a2

b2 +
a2

c2 A(Tyz)

where A(Tyz) is the area of Tyz. Since Tyz has base b and height c, it has area 1
2 bc. So

Area(S) =
1
2

c

1 +
a2

b2 +
a2

c2 bc =
1
2

a

a2b2 + a2c2 + b2c2
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Method 3. S is the part of the surface y = h(x, z) with h(x, z) = b
(
1´ x

a ´ z
c
)

and with
(x, z) running over the triangle Txz in the xz-plane with vertices (0, 0, 0) (a, 0, 0) and
(0, 0, c). Hence by the third part of (3.3.2) in the CLP-4 text,

Area(S) =
ĳ

Txz

b

1 + hx(x, z)2 + hz(x, z)2 dx dz

=

ĳ

Txz

c

1 +
b2

a2 +
b2

c2 dx dz

=

c

1 +
b2

a2 +
b2

c2 A(Txz)

where A(Txz) is the area of Txz. Since Txz has base a and height c, it has area 1
2 ac. So

Area(S) =
1
2

c

1 +
b2

a2 +
b2

c2 bc =
1
2

a

a2b2 + a2c2 + b2c2

(b) We have already seen in the solution to part (a) that

Area(Txy) =
ab
2

Area(Txz) =
ac
2

Area(Tyz) =
bc
2

Hence

Area(S) =

c

a2b2

4
+

a2c2

4
+

b2c2

4

=
b

Area(Txy)2 + Area(Txz)2 + Area(Tyz)2

S-3: (a) Think of the cylinder as being a piece of paper that has been partially rolled up. If
you flatten the piece of paper out, you get a rectangle with the length of one side being h
and the length of the other side being one quarter of the circumference of a circle of
radius a, i.e. 1

4(2πa) = πa
2 . So the area of S is πah

2 .

(b) S is parametrized by

x(θ, y) = a cos θ y(θ, y) = y z(θ, z) = a sin θ

with (θ, y) running over 0 ď θ ď π
2 , 0 ď y ď h. Then, by (3.3.1) in the CLP-4 text,

(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
= (´a sin θ, 0, a cos θ)

(Bx
By

,
By
By

,
Bz
By

)
= (0, 1, 0)

dS =
ˇ

ˇ

ˇ

(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
ˆ
(Bx
By

,
By
By

,
Bz
By

)ˇ
ˇ

ˇ
dθdy

=
ˇ

ˇ(´a cos θ, 0,´a sin θ)
ˇ

ˇdθ dy
= a dθ dy
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So

Area(S) =
ĳ

S

dS =

ż π/2

0
dθ

ż h

0
dy a = a

(π

2

)
h

S-4: The surface is z = f (x, y) with f (x, y) = xy. So, by (3.3.2) in the CLP-4 text,

dS =
b

1 + f 2
x + f 2

y dx dy =
b

1 + x2 + y2 dx dy

and

I =
ĳ

S

(x2 + y2) dS =

ĳ

x2+y2ď3

(x2 + y2)
b

1 + x2 + y2 dx dy

=

ż 2π

0
dθ

ż

?
3

0
dr r r2

a

1 + r2

We switched to polar coordinates in the last step. Making the change of variables
u = 1 + r2, du = 2r dr

I = π

ż 4

1
du (u´ 1)

?
u = π

[
2
5

u5/2 ´ 2
3

u3/2
]4

1
= π

[
64
5
´ 16

3
´ 2

5
+

2
3

]
=

116
15

π

S-5: First observe that any point (x, y, z) on the paraboliod lies above the xy-plane if and
only if

0 ď z = a2 ´ x2 ´ y2 ðñ x2 + y2 ď a2

That is, if and only if (x, y) lies in the circular disk of radius a centred on the origin. The
equation of the paraboloid is of the form z = f (x, y) with f (x, y) = a2 ´ x2 ´ y2. So, by
(3.3.2) in the CLP-4 text,

Surface area =

ĳ

x2+y2ďa2

b

1 + fx(x, y)2 + fy(x, y)2 dx dy

=

ĳ

x2+y2ďa2

b

1 + 4x2 + 4y2 dx dy
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Switching to polar coordinates,

Surface area =

ż a

0
dr

ż 2π

0
dθ r

a

1 + 4r2

= 2π

ż a

0
dr r

a

1 + 4r2

= 2π

ż 1+4a2

1

ds
8
?

s with s = 1 + 4r2, ds = 8r dr

=
π

4
2
3

s3/2
ˇ

ˇ

ˇ

ˇ

s=1+4a2

s=1

=
π

6
[
(1 + 4a2)

3/2 ´ 1
]

S-6: First observe that any point (x, y, z) on the cone lies between the planes z = 2 and
z = 3 if and only if 4 ď x2 + y2 ď 9. The equation of the cone can be rewritten in the form
z = f (x, y) with f (x, y) =

a

x2 + y2. Note that

fx(x, y) =
x

a

x2 + y2
fy(x, y) =

y
a

x2 + y2

So, by (3.3.2) in the CLP-4 text,

Surface area =

ĳ

4ďx2+y2ď9

b

1 + fx(x, y)2 + fy(x, y)2 dx dy

=

ĳ

4ďx2+y2ď9

d

1 +
x2

x2 + y2 +
y2

x2 + y2 dx dy

=
?

2
ĳ

4ďx2+y2ď9

dx dy

Now the domain of integration is a circular washer with outside radius 3 and inside
radius 2 and hence of area π(32 ´ 22) = 5π. So the surface area is 5

?
2π.

S-7: The equation of the surface is of the form z = f (x, y) with f (x, y) = 2
3

(
x3/2 + y3/2).

Note that

fx(x, y) =
?

x fy(x, y) =
?

y
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So, by (3.3.2) in the CLP-4 text,

Surface area =

ż 1

0
dx

ż 1

0
dy

b

1 + fx(x, y)2 + fy(x, y)2

=

ż 1

0
dx

ż 1

0
dy

a

1 + x + y

=

ż 1

0
dx
[2

3
(1 + x + y)3/2

]y=1

y=0

=
2
3

ż 1

0
dx
[
(2 + x)3/2 ´ (1 + x)3/2]

=
2
3

2
5

[
(2 + x)5/2 ´ (1 + x)5/2

]x=1

x=0

=
4

15
[
35/2 ´ 25/2 ´ 25/2 + 15/2]

=
4

15
[
9
?

3´ 8
?

2 + 1
]

S-8: (a) By (3.3.2) in the CLP-4 text, F(x, y) =
b

1 + fx(x, y)2 + fy(x, y)2.

(b) (i) The “dimple” to be painted is part of the upper sphere x2 + y2 +
(
z´ 2

?
3
)2

= 4. It
is on the bottom half of the sphere and so has equation z = f (x, y) = 2

?
3´a

4´ x2 ´ y2.
Note that

fx(x, y) =
x

a

4´ x2 ´ y2
fy(x, y) =

y
a

4´ x2 ´ y2

The point on the dimple with the largest value of x is (1, 0,
?

3). (It is marked by a dot in
the figure above.) The dimple is invariant under rotations around the z–axis and so has
(x, y) running over x2 + y2 ď 1. So, by (3.3.2) in the CLP-4 text,

Surface area =

ĳ

x2+y2ď1

b

1 + fx(x, y)2 + fy(x, y)2 dx dy

=

ĳ

x2+y2ď1

d

1 +
x2

4´ x2 ´ y2 +
y2

4´ x2 ´ y2 dx dy

=

ĳ

x2+y2ď1

2
a

4´ x2 ´ y2
dx dy

Switching to polar coordinates,

Surface area =

ż 2π

0
dθ

ż 1

0
dr

2r?
4´ r2

(b) (ii) Observe that if we flip the dimple up by reflecting it in the plane z =
?

3, as in the
figure below, the “Death Star” becomes a perfect ball of radius 2.
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x

z

z “ ?
3 p1, 0,?

3q

2
?
3

2

π
6

The area of the pink dimple in the figure above is identical to the area of the blue cap in
that figure. So the total surface area of the Death Star is exactly the surface area of a
sphere of radius 2 and so is 4

3 π23 = 32π
3 .

S-9: On the upper half of the cone

z = f (x, y) =
b

x2 + y2 fx(x, y) =
x

a

x2 + y2
fy(x, y) =

y
a

x2 + y2

so that

dS =
b

1 + fx(x, y)2 + fy(x, y)2 dx dy =

d

1 +
x2

x2 + y2 +
y2

x2 + y2 dx dy =
?

2 dx dy

and

Area =

ĳ

1ďx2+y2ď162

?
2 dx dy

=
?

2
[
area of

 

(x, y)
ˇ

ˇ x2 + y2 ď 162 (´ area of
 

(x, y)
ˇ

ˇ x2 + y2 ď 1
(

]

=
?

2
[
π162 ´ π12] = 255

?
2π « 1132.9

S-10: We are to find the surface area of part of a hemisphere. On the hemisphere

z = f (x, y) =
b

a2 ´ x2 ´ y2 fx(x, y) = ´ x
a

a2 ´ x2 ´ y2
fy(x, y) = ´ y

a

a2 ´ x2 ´ y2

so that

dS =
b

1 + fx(x, y)2 + fy(x, y)2 dx dy =

d

1 +
x2

a2 ´ x2 ´ y2 +
y2

a2 ´ x2 ´ y2 dx dy

=

d

a2

a2 ´ x2 ´ y2 dx dy
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In polar coordinates, this is dS = a?
a2´r2

r dr dθ. We are to find the surface area of the

part of the hemisphere that is inside the cylinder, x2 ´ ax + y2 = 0, which is polar
coordinates is becomes r2 ´ ar cos θ = 0 or r = a cos θ. The top half of the domain of
integration is sketched below.

x

y

pa{2, 0q

r “ a cos θ

So the

Surface Area = 2
ż π/2

0
dθ

ż a cos θ

0
dr r

a?
a2 ´ r2

= 2a
ż π/2

0
dθ
[
´
a

a2 ´ r2
]a cos θ

0

= 2a
ż π/2

0
dθ
[
a´ a sin θ

]

= 2a2
[
θ + cos θ

]π/2

0
= a2[π ´ 2]

S-11: The upper half cone obeys f (x, y, z) = x2 + y2 ´ z2 = 0. So, by (3.3.3) in the CLP-4
text,

dS =

ˇ

ˇ

ˇ

ˇ

ˇ

∇∇∇ f
∇∇∇ f ¨ k̂

ˇ

ˇ

ˇ

ˇ

ˇ

dx dy =

ˇ

ˇ

ˇ

ˇ

ˇ

2xı̂ıı + 2ŷ´ 2zk̂
´2z

ˇ

ˇ

ˇ

ˇ

ˇ

dx dy =

a

x2 + y2 + z2

z
dx dy

But on the cone x2 + y2 = z2, and z ą 0, so that

dS =

a

x2 + y2 + z2

z
dx dy =

?
2z2

z
dx dy =

?
2 dx dy

and

x4 ´ y4 + y2z2 ´ z2x2 + 1 = x4 ´ y4 + y2(x2 + y2)´ (x2 + y2)x2 + 1 = 1

We have to integrate (x, y) over the interior of x2 + y2 = 2x, or equivalently, the interior
of (x´ 1)2 + y2 = 1, which is the disk

D =
 

(x, y)
ˇ

ˇ (x´ 1)2 + y2 ď 1
(

So

ĳ

S

=1
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

(x4 ´ y4 + y2z2 ´ z2x2 + 1) dS =
?

2
ĳ

D

dx dy =
?

2 Area(D) =
?

2 π
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S-12: As we saw in Example 3.1.5 of the CLP-4 text, the torus may be parametrized by

r(θ, ψ) = (R + r cos θ) cos ψ ı̂ıı + (R + r cos θ) sin ψ ̂ + r sin θ k̂ 0 ď θ, ψ ď 2π

Then

Br
Bψ

= (R + r cos θ)
[´ sin ψı̂ıı + cos ψ̂

] Br
Bθ

= r
[´ sin θ cos ψ ı̂ıı´ sin θ sin ψ ̂ + cos θ k̂

]

and

Br
Bψ
ˆ Br
Bθ

= r(R + r cos θ)
[´ sin ψı̂ıı + cos ψ̂

]ˆ [´ sin θ cos ψ ı̂ıı´ sin θ sin ψ ̂ + cos θ k̂
]

= r(R + r cos θ)det




ı̂ıı ̂ k̂
´ sin ψ cos ψ 0

´ sin θ cos ψ ´ sin θ sin ψ cos θ




= r(R + r cos θ)
[

cos ψ cos θ ı̂ıı + sin ψ cos θ ̂ + sin θ k̂
]

As
[

cos ψ cos θ ı̂ıı + sin ψ cos θ ̂ + sin θ k̂
]

is a unit vector, (we could have shortened this
computation by observing that ´ sin ψ ı̂ıı + cos ψ ̂ and ´ sin θ cos ψ ı̂ıı´ sin θ sin ψ ̂ + cos θ k̂
are mutually perpendicular unit vectors, so that their cross product is automatically a
unit vector) and

ˇ

ˇ

ˇ

ˇ

Br
Bψ
ˆ Br
Bθ

ˇ

ˇ

ˇ

ˇ

= r(R + r cos θ) ùñ dS = r(R + r cos θ) dψ dθ

The total surface area of the torus is

r
ż 2π

0
dθ

ż 2π

0
dψ (R + r cos θ) = 2πr

ż 2π

0
dθ (R + r cos θ) = (2π)2Rr

S-13: By symmetry, the centroid (x̄, ȳ, z̄) obeys x̄ = ȳ = z̄. Parametrize the sphere using
spherical coordinates.

r(θ, ϕ) = a sin ϕ cos θ ı̂ıı + a sin ϕ sin θ ̂ + a cos ϕ k̂

Then

Br
Bθ

= ´a sin ϕ sin θ ı̂ıı + a sin ϕ cos θ ̂
Br
Bϕ

= a cos ϕ cos θ ı̂ıı + a cos ϕ sin θ ̂´ a sin ϕ k̂

so that

Br
Bθ
ˆ Br
Bϕ

= det




ı̂ıı ̂ k̂
´a sin ϕ sin θ a sin ϕ cos θ 0
a cos ϕ cos θ a cos ϕ sin θ ´a sin ϕ




= ´a2 sin2 ϕ cos θ ı̂ıı´ a2 sin2 ϕ sin θ ̂´ a2 sin ϕ cos ϕ k̂

ùñ dS =

ˇ

ˇ

ˇ

ˇ

Br
Bθ
ˆ Br
Bϕ

ˇ

ˇ

ˇ

ˇ

dθ dϕ = a2 sin ϕ dθ dϕ
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As the surface area of the part of the sphere in the first octant is 1
84πa2 = πa2

2

x̄ = ȳ = z̄ =

ť

S z dS
ť

S dS
=

1
πa2/2

ż π/2

0
dθ

ż π/2

0
dϕ (a2 sin ϕ)(

z
hkkikkj

a cos ϕ)

=
2a
π

π

2

ż π/2

0
dϕ sin ϕ cos ϕ = a

[
1
2

sin2 ϕ

]π/2

0
=

a
2

S-14: In cylindrical coordinates

x = r cos θ y = r sin θ z = z

In these coordinates the equation, x2 + y2 = 2ay, of the cylinder becomes

r2 = 2ar sin θ or r = 2a sin θ

That is, r = f (θ) with f (θ) = 2a sin θ. Parametrize the cylinder by
r(θ, z) = x(θ, z) ı̂ıı + y(θ, z) ̂ + z(θ, z) k̂ with

x(θ, z) = f (θ) cos θ = 2a sin θ cos θ = a sin 2θ

y(θ, z) = f (θ) sin θ = 2a sin θ sin θ = a(1´ cos 2θ)

z(θ, z) = z

Under this parametrization,

Br
Bθ

= 2a cos 2θ ı̂ıı + 2a sin 2θ ̂
Br
Bz

= k̂ ùñ Br
Bθ
ˆ Br
Bz

= ´2a cos 2θ ̂ + 2a sin 2θ ı̂ıı

ùñ dS =

ˇ

ˇ

ˇ

ˇ

Br
Bθ
ˆ Br
Bz

ˇ

ˇ

ˇ

ˇ

dθ dz = 2a dθ dz

We still have to determine the limits of integration. The figure on the left below provides
a top view of the cylinder.

x

y

x2 + y2 = 2ax

θ

r
(0, a) r

z z = r

z = −r
r=2a sin θ

From it we see that 0 ď θ ď π. The cone z2 = x2 + y2 = r2 (i.e. z = ˘r) and the cylinder
r = 2a sin θ intersect at z2 = r2 = 4a2 sin2 θ. So, for each fixed θ, z runs from ´2a sin θ to
z = +2a sin θ. (See the figure on the right above. It shows a constant θ cross-section.)
Finally,

Area =

ż

|z|ď2a sin θ
2a dθ dz = 2a

ż π

0
dθ

ż 2a sin θ

´2a sin θ
dz = 8a2

ż π

0
dθ sin θ = 8a2

[
´ cos θ

]π

0

= 16a2
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S-15: (a) This right circular cone symmetric about the z-axis projects down onto a disk D
in the plane z = 0. Setting z = b gives

D =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď a2, z = 0
(

Since G(x, y, z) = b2(x2 + y2)´ a2z2 is constant on S , the area elements dS on S are
related to area elements dxdy on D as follows:

dS =
|∇G(x, y, z)|
|∇G(x, y, z) ¨ k̂| dxdy =

2|(b2x, b2y,´a2z)|
2|a2z| dxdy =

a

b4(x2 + y2) + a4z2

a2z
dxdy

by (3.3.3) in the CLP-4 text. The defining equation for S gives z = b
a

a

x2 + y2, so

dS =

a

b4(x2 + y2) + a2b2(x2 + y2)

a
a

b2(x2 + y2)
dxdy =

1
a

a

a2 + b2 dxdy.

Hence I =
?

a2+b2

a
ť

D(x2 + y2)dxdy.

(b) Or, parametrize the surface S using θ and t as follows:

x = t cos θ, y = t sin θ, z =
b
a

b

x2 + y2 =
b
a

t, 0 ď θ ď 2π, 0 ď t ď a. (˚)

Then we have, by (3.3.1) in the CLP-4 text,

Br
Bt
ˆ Br
Bθ

= det




ı̂ıı ̂ k̂
cos θ sin θ b/a
´t sin θ t cos θ 0


 =

(´ b
a

t cos θ,´b
a

t sin θ, t
)
,

so dS =
ˇ

ˇ

ˇ

Br
Bt
ˆ Br
Bθ

ˇ

ˇ

ˇ
dt dθ = t

a

1 + b2/a2 dt dθ.

It follows that for the rectangular regionR of the tθ-plane described in (˚),

I =
ĳ

R

(
t2)t

a

1 + b2/a2 dt dθ.

(c) Using polar coordinates in (a) would give

I =
?

a2 + b2

a

ż 2π

θ=0

ż a

r=0
r2 r dr dθ =

π

2
a3
a

a2 + b2.

Direct integration in (b) gives the same thing, because

I =
ĳ

D

(
t2)t

a

1 + b2/a2 dt dθ =

?
a2 + b2

a

ż 2π

θ=0

ż a

t=0
t3 dt dθ.

295



S-16: (a) The surface is g(x, y, z) = x2 + y2 + z2 ´ a2 = 0. So, on the surface of the sphere,

n̂ =
∇∇∇g
|∇∇∇g| =

xı̂ıı + ŷ + zk̂
a

x2 + y2 + z2
ñ F ¨ n̂ =

(
x2 + y2 + z2)n++1´1/2

=
(
a2)n+1/2

= a2n+1

ñ
ĳ

S

F ¨ n̂ dS = a2n+1
ĳ

S

dS = a2n+1Area(S) = 4πa2n+3

since the surface area of a sphere of radius a is 4πa2.

(b) The box has six faces.

S1 =
 

(x, y, z)
ˇ

ˇ 0 ď x ď a, 0 ď y ď b, z = c
(

with outward normal n̂ = k̂

S2 =
 

(x, y, z)
ˇ

ˇ 0 ď x ď a, 0 ď y ď b, z = 0
(

with outward normal n̂ = ´k̂

S3 =
 

(x, y, z)
ˇ

ˇ 0 ď x ď a, 0 ď z ď c, y = b
(

with outward normal n̂ = ̂

S4 =
 

(x, y, z)
ˇ

ˇ 0 ď x ď a, 0 ď z ď c, y = 0
(

with outward normal n̂ = ´̂

S5 =
 

(x, y, z)
ˇ

ˇ 0 ď y ď b, 0 ď z ď c, x = a
(

with outward normal n̂ = ı̂ıı

S6 =
 

(x, y, z)
ˇ

ˇ 0 ď y ď b, 0 ď z ď c, x = 0
(

with outward normal n̂ = ´ı̂ıı

n̂ = k̂

n̂ = −k̂

n̂ = ̂n̂ = −̂

(0, b, c)

(a, b, 0)

S1

S2

y

z

x

For S1, i.e. the z = c face, and S2, i.e. the z = 0 face,
ż

z=c
face

F ¨ n̂ dS =

ż

z=c
face

(
x ı̂ıı + y ̂ + c k̂

) ¨ k̂ dx dy = c
ż

z=c
face

dx dy = abc
ż

z=0
face

F ¨ n̂ dS =

ż

z=0
face

(
x ı̂ıı + y ̂ + 0 k̂

) ¨ (´k̂) dx dy = 0

because the z = c face has area ab. Similarly,
ż

x=0
face

F ¨ n̂ dS =

ż

y=0
face

F ¨ n̂ dS = 0
ż

x=a
face

F ¨ n̂ dS =

ż

y=b
face

F ¨ n̂ dS = abc

The total flux is 3abc.

(c) The base of the cone is
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 1, z = 0
(

and has (outward) normal
n̂ = ´k̂. So The flux through the base is

ż

base
F ¨ n̂ dS =

ĳ

x2+y2ď1

(yı̂ıı) ¨ (´k̂)dx dy = 0
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In cylindrical coordinates x = r cos θ, y = r sin θ, z = z and the equation
z = 1´a

x2 + y2 of the top part of the cone becomes z = 1´ r. So we may parametrize
the top part of the cone by

r(r, θ) = r cos θ ı̂ıı + r sin θ ̂ + (1´ r) k̂ with 0 ď θ ď 2π, 0 ď r ď 1

Then

Br
Br

= cos θ ı̂ıı + sin θ ̂´ k̂

Br
Bθ

= ´r sin θ ı̂ıı + r cos θ ̂

Br
Br
ˆ Br
Bθ

= det




ı̂ıı ̂ k̂
cos θ sin θ ´1
´r sin θ r cos θ 0




= ´r cos θ ı̂ıı´ r sin θ ̂ + r k̂

ùñ n̂ dS =
Br
Br
ˆ Br
Bθ

dr dθ

=
(´ r cos θ ı̂ıı´ r sin θ ̂ + rk̂

)
dr dθ

by (3.1.1) in the CLP-4 text. We have the orientation correct because the k̂ component of
n̂ is positive. The flux through the top, as well as the total flux, is

ż

top
F ¨ n̂ dS =

ż 1

0
dr

ż 2π

0
dθ
(

y
hkkikkj

r sin θ ı̂ıı +

z
hkkikkj

(1´ r) k̂
) ¨ (´ r cos θ ı̂ıı´ r sin θ ̂ + r k̂

)

=

ż 1

0
dr

ż 2π

0
dθ
(´ r2 sin θ cos θ + r(1´ r)

)

= ´
[
ż 1

0
dr r2

][
ż 2π

0
dθ

1
2

sin(2θ)

]
+ 2π

ż 1

0
dr
[
r´ r2]

= ´1
3
ˆ 0 + 2π

[1
2
´ 1

3

]
=

π

3

S-17: Let G(x, y, z) = x2 + y2 + 2z. Then, by (3.3.3) of the CLP-4 text,

n̂ dS =
∇∇∇G
∇∇∇G ¨ k̂ dxdy =

2xı̂ıı + 2ŷ + 2k̂
2

dxdy = (xı̂ıı + ŷ + k̂)dxdy

x2 + y2
a

1 + x2 + y2
dS =

x2 + y2
a

1 + x2 + y2

b

1 + x2 + y2 dxdy = (x2 + y2) dxdy

F ¨ n̂ dS =
[
xı̂ıı + ŷ + zk̂

] ¨ [xı̂ıı + ŷ + k̂
]

dxdy =
[
x2 + y2 + z

]
dxdy

=
[
1 +

1
2
(x2 + y2)

]
dxdy

since z = 1´ 1
2(x2 + y2) on S .
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(a)
ĳ

S

x2 + y2
a

1 + x2 + y2
dS =

ĳ

S

(x2 + y2) dxdy = 4
ż 1

0
dx

ż 1

0
dy (x2 + y2)

= 4
ż 1

0
dx
(
x2 +

1
3
)
= 4

(1
3
+

1
3

)
=

8
3

(b)
ĳ

S

F ¨ n̂ dS =

ż 1

´1
dx

ż 1

´1
dy
[
1 +

1
2
(x2 + y2)

]
= 2ˆ 2 +

1
2
ˆ 8

3
=

16
3

S-18: Let G(x, y, z) = z´ xy. Then, using (3.3.3) in the CLP-4 text,

n̂ dS =
∇∇∇G
∇∇∇G ¨ k̂ dxdy =

´yı̂ıı´ x̂ + k̂
1

dxdy = (´yı̂ıı´ x̂ + k̂)dxdy

x2y
a

1 + x2 + y2
dS =

x2y
a

1 + x2 + y2

b

y2 + x2 + 1 dxdy = x2y dxdy

F ¨ n̂ dS =
[
xı̂ıı + ŷ + k̂

] ¨ [´ yı̂ıı´ x̂ + k̂
]

dxdy =
[
1´ 2xy

]
dxdy

(a)
ĳ

S

x2y
a

1 + x2 + y2
dS =

ĳ

S

x2y dxdy =

ż 1

0
dx

ż 1

0
dy x2y =

ż 1

0
dx 1

2 x2 =
1
6

(b)
ĳ

S

F ¨ n̂ dS =

ż 1

0
dx

ż 1

0
dy [1´ 2xy] =

ż 1

0
dx [1´ x] = 1´ 1

2
=

1
2

S-19: For the surface z = f (x, y) = y3/2,

dS =
b

1 + f 2
x + f 2

y dxdy =

c

1 +
(3

2
?

y
)2

dxdy =

c

1 +
9
4

y dxdy

by (3.3.2) in the CLP-4 text. So the area is

ż 1

0
dx

ż 1

0
dy

c

1 +
9
4

y =

ż 1

0
dx

8
27

[(
1 +

9
4

y
)3/2]1

0
=

ż 1

0
dx

8
27

[(13
4

)3/2
´ 1
]

=
8
27

[(
13
4

)3/2

´ 1

]
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S-20: The surface is a sphere of radius 2 centered on (0, 0, 2), The plane z = 1 intersects
the sphere on the circle x2 + y2 = 3. Let F(x, y, z) = x2 + y2 + (z´ 2)2. Then, by (3.3.3) in
the CLP-4 text,

dS =
ˇ

ˇ

ˇ

∇∇∇F
∇∇∇F ¨ k̂

ˇ

ˇ

ˇ
dxdy =

ˇ

ˇ

ˇ

2xı̂ıı + 2ŷ + 2(z´ 2)k̂
2(z´ 2)

ˇ

ˇ

ˇ
dxdy =

ˇ

ˇ

ˇ

xı̂ıı + ŷ + (z´ 2)k̂
(z´ 2)

ˇ

ˇ

ˇ
dxdy

=

a

x2 + y2 + (z´ 2)2

|z´ 2| dxdy =
2

|z´ 2| dxdy

since x2 + y2 + (z´ 2)2 = 4 on S . On S , z ď 2, so |z´ 2| = 2´ z and
ĳ

S

f (x, y, z)dS =

ĳ

x2+y2ď3

(2´ z)(x2 + y2)
2

|z´ 2| dxdy = 2
ĳ

x2+y2ď3

(x2 + y2)dxdy

Switching to polar coordinates
ĳ

S

f (x, y, z)dS = 2
ż

?
3

0
dr r

ż 2π

0
dθ r2 = 2(2π)

r4

4

ˇ

ˇ

ˇ

?
3

0
= 9π

S-21: (a) Each (horizontal) constant z cross-section is a circle centred on the z-axis. The
radius varies linearly from 2, when z = 0 to 0, when z = 3. So the radius at height z is
2
3(3´ z) and we can use

r(θ, z) =
2
3
(3´ z) cos θ ı̂ıı +

2
3
(3´ z) sin θ ̂ + z k̂ 0 ď θ ă 2π, 0 ď z ď 3

as the parametrization.

(b) By symmetry the centre of mass will lie on the z-axis. We are only asked for the
z-coordinate anyway. The z-coordinate of the centre of mass is the weighted average of z
over the cone. Since a density has not been specified, we assume that it is a constant. We
may take the density to be 1, so the z-coordinate of the centre of mass is

ť

S z dS/
ť

S dS.

Since
Br
Bθ =

(´ 2
3(3´ z) sin θ , 2

3(3´ z) cos θ , 0
)

Br
Bz =

(´ 2
3 cos θ , ´2

3 sin θ , 1
)

Br
Bθ ˆ Br

Bz =
(2

3(3´ z) cos θ , 2
3(3´ z) sin θ , 4

9(3´ z)
)

the element of surface area for this parametrization is

dS =
ˇ

ˇ

Br
Bθ ˆ Br

Bz

ˇ

ˇdθdz = 2
3(3´ z)

ˇ

ˇ(cos θ , sin θ , 2
3

)ˇ
ˇdθdz

= 2
?

13
9 (3´ z)dθdz

So the surface area,
ť

S dS, of the cone is
ż 3

0
dz

ż 2π

0
dθ 2

?
13

9 (3´ z) = 4
?

13
9 π

ż 3

0
dz (3´ z) = ´2

?
13

9 π(3´ z)2
ˇ

ˇ

ˇ

3

0

= 2
?

13π
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and the z-coordinate of the centre of mass is

z̄ =
1

2
?

13π

ż 3

0
dz

ż 2π

0
dθ 2

?
13

9 (3´ z)z =
2
9

ż 3

0
dz (3z´ z2) =

2
9

[3z2

2
´ z3

3

]3

0

=
2
9

27
6

= 1

This is a little less than half way up the cone, which is reasonable since the cone is
“bottom heavy”.

S-22: Each constant z cross-section of the cone is a circle. When z = 0, that circle has
radius a. When z = a that circle has radius 0. Thus the radius decreases linearly from a to
0 as z increases from 0 to a. So the radius at height z is a´ z and we can parametrize the
cone by

r(θ, z) = (a´ z) cos θ ı̂ıı + (a´ z) sin θ ̂ + z k̂ 0 ď θ ă 2π, 0 ď z ď a

Since

Br
Bθ =

(´ (a´ z) sin θ , (a´ z) cos θ , 0
)

Br
Bz =

(´ cos θ , ´ sin θ , 1
)

Br
Bθ ˆ Br

Bz =
(
(a´ z) cos θ , (a´ z) sin θ , a´ z

)

the element of surface area for this parametrization is

dS =
ˇ

ˇ

Br
Bθ ˆ Br

Bz

ˇ

ˇdθdz = (a´ z)
ˇ

ˇ(cos θ , sin θ , 1
)ˇ
ˇdθdz

=
?

2(a´ z)dθdz

by (3.3.1) in the CLP-4 text. So the surface area of the cone is

ĳ

S

dS =

ż a

0
dz

ż 2π

0
dθ
?

2(a´ z)

= 2
?

2 π

ż a

0
dz (a´ z) = ´

?
2 π(a´ z)2

ˇ

ˇ

ˇ

a

0

=
?

2 πa2

and the z-coordinate of the centre of mass is

z̄ =

ť

S z dS
ť

S dS
=

1?
2 πa2

ż a

0
dz

ż 2π

0
dθ
?

2(a´ z)z =
2
a2

ż a

0
dz (az´ z2)

=
2
a2

[ az2

2
´ z3

3

]a

0
=

2
a2

a3

6
=

a
3

This is a little less than half way up the cone, which is reasonable since the cone is
“bottom heavy”.
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S-23: Parametrize the surface by

x(θ, z) = cos θ y(θ, z) = 2 sin θ z(θ, z) = z

with (θ, z) running over 0 ď θ ď 2π, 0 ď z ď 1. Then, by (3.3.1) in the CLP-4 text,

(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
= (´ sin θ, 2 cos θ, 0)

(Bx
Bz

,
By
Bz

,
Bz
Bz

)
= (0, 0, 1)

n̂ dS = ˘
(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
ˆ
(Bx
Bz

,
By
Bz

,
Bz
Bz

)
dθdz

= (2 cos θ, sin θ, 0)dθ dz (+ for outward normal)

F
(
x(θ, z), y(θ, z), z(θ, z)

)
= cos θ ı̂ıı + 2z sin θ cos θ ̂ + 16z sin4 θ k̂

So

ĳ

S

F ¨ n̂ dS =

ż 1

0
dz

ż 2π

0
dθ
[
2 cos2 θ + 2z sin2 θ cos θ

]

=

ż 1

0
dz

ż 2π

0
dθ
[
1 + cos(2θ) + 2z sin2 θ cos θ

]

=

ż 1

0
dz
[
θ +

1
2

sin(2θ) +
2
3

z sin3 θ
]2π

0
= 2π

For an efficient, sneaky, way to evaluate
ş2π

0 cos2 θ dθ, see Example 2.4.4 in the CLP-4 text.

S-24: By (3.3.2) of the CLP-4 text, with f (x, y) = 4´ x2 ´ y2,

n̂ dS = ˘(´ fx , ´ fy , 1
)
dxdy

= ˘(2x , 2y , 1
)

dxdy

To get the downward pointing normal, we want the minus sign. Set

T =
 

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1´ x
(
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Then

ĳ

S

F ¨ n̂ dS = ´
ĳ

T

(
x + 1 , y + 1 , 2

z
hkkkkkkikkkkkkj

(4´ x2 ´ y2)
) ¨ (2x , 2y , 1

)
dxdy

= ´
ĳ

T

(
8 + 2x + 2y

)
dxdy

= ´
ż 1

0
dx

ż 1´x

0
dy
(
8 + 2x + 2y

)

= ´
ż 1

0
dx
(
8(1´ x) + 2x(1´ x) + (1´ x)2)

= ´
ż 1

0
dx
(
9´ 8x´ x2)

= ´
(

9´ 4´ 1
3

)
= ´14

3

S-25: First we have to parametrize S. It is natural to use spherical coordinates with
ρ =

?
2. However if we use the standard spherical coordinates

x =
?

2 sin ϕ cos θ y =
?

2 sin ϕ sin θ z =
?

2 cos ϕ

the condition x ěa

y2 + z2, i.e.
?

y2+z2

x ď 1, becomes
?

sin2 ϕ sin2 θ+cos2 ϕ
sin ϕ cos θ ď 1, which is very

complicated. So let’s back up and think a bit before we compute. From the sketch below

z

y

x

(x, 0, 0)
√

y2 + z2

(x, y, z)

we see that
?

y2+z2

x is the tangent of the angle between the radius vector (x, y, z) and the
x-axis. The angle between the radius vector (x, y, z) and the z-axis (not the x-axis) is
exactly spherical coordinate ϕ. So let’s modify spherical coordinates to make the x-axis
play the role of the z-axis. The easy way to do is to just rename x = Z, y = X, z = Y.
Then the integral we are to compute becomes

ť

S ZX2 dS, and the condition
x ěa

y2 + z2 becomes Z ě ?X2 + Y2. Under the parametrization

X =
?

2 sin ϕ cos θ Y =
?

2 sin ϕ sin θ Z =
?

2 cos ϕ

the condition Z ě ?X2 + Y2 is
?

X2+Y2

Z = sin ϕ
cos ϕ ď 1, which is turn is 0 ď ϕ ď π

4 . As

dS = 2 sin ϕ dθdϕ (see Appendix F.3 in the CLP-4 text and recall that ρ =
?

2) the
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specified integral is

ĳ

S

xy2 dS =

ĳ

S

ZX2 dS = 2
ż π/4

0
dϕ sin ϕ

ż 2π

0
dθ
(?

2 cos ϕ
)(?

2 sin ϕ cos θ
)2

= 4
?

2

#

ż π/4

0
dϕ cos ϕ sin3 ϕ

+#

ż 2π

0
dθ cos2 θ

+

= 4
?

2

#

ż π/4

0
dϕ cos ϕ sin3 ϕ

+#

ż 2π

0
dθ

cos(2θ) + 1
2

+

= 4
?

2

[
sin4 ϕ

4

]π/4

0

[
sin(2θ)

4
+

θ

2

]2π

0

=

?
2 π

4

For an efficient, sneaky, way to evaluate
ş2π

0 cos2 θ dθ, see Example 2.4.4 in the CLP-4 text.

S-26: Here is a sketch of the part of S that is in the first octant.

θ

z

y

x

x2 + z2 = sin2 y

θ

(x, y, z)

For each fixed y, x2 + z2 = sin2 y is a circle of radius sin y. (It’s the blue circle in the
sketch above.) So we may parametrize the surface by

r(θ, y) =
(

sin y cos θ , y , sin y sin θ
)

0 ď θ ă 2π, 0 ď y ď π

Then, by (3.3.1) in the CLP-4 text,

Br
Bθ

=
(´ sin y sin θ , 0 , sin y cos θ

)

Br
By

=
(

cos y cos θ , 1 , cos y sin θ
)

Br
Bθ
ˆ Br
By

=
(´ sin y cos θ , sin y cos y , ´ sin y sin θ

)

dS =

ˇ

ˇ

ˇ

ˇ

Br
Bθ
ˆ Br
By

ˇ

ˇ

ˇ

ˇ

dθ dy = sin y
b

1 + cos2 y dθ dy
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So the specified integral is
ĳ

S

b

1 + cos2 y dS =

ż π

0
dy

ż 2π

0
dθ sin y

 

1 + cos2 y
(

= 2π

ż π

0
dy sin y

 

1 + cos2 y
(

= ´2π

ż ´1

1
du

 

1 + u2( with u = cos y, du = ´ sin y dy

= 4π

ż 1

0
du

 

1 + u2(

= 4π

[
u +

u3

3

]1

0

=
16
3

π

S-27: The paraboloid is

S =
 

(x, y, z)
ˇ

ˇ z = 1´ x2 ´ y2, z ě 0
(

=
 

(x, y, z)
ˇ

ˇ z = 1´ x2 ´ y2, x2 + y2 ď 1
(

By (3.3.2) in the CLP-4 text, the paraboloid has

dS =
b

1 + fx(x, y)2 + fy(x, y)2 dxdy with z = f (x, y) = 1´ x2 ´ y2

=
b

1 + 4x2 + 4y2 dxdy

By symmetry, the centre of mass will lie on the z-axis. By definition, the z-coordinate of
the centre of mass is the weighted average of z over S, which is

z̄ =

ť

S z ρ(x, y, z) dS
ť

S ρ(x, y, z) dS

On S,

ρ(x, y, z) =
z?

5´ 4z
=

1´ x2 ´ y2
a

1 + 4x2 + 4y2

so that

ρ(x, y, z) dS = (1´ x2 ´ y2)dxdy

So, using polar coordinates, the denominator of z̄ is
ĳ

S

ρ(x, y, z) dS =

ĳ

x2+y2ď1

(1´ x2 ´ y2)dxdy =

ż 1

0
dr r

ż 2π

0
dθ (1´ r2)

= 2π

ż 1

0
r(1´ r2) dr

= 2π
[r2

2
´ r4

4

]1

0

=
π

2
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and the numerator of z̄ is
ĳ

S

zρ(x, y, z) dS =

ĳ

x2+y2ď1

(1´ x2 ´ y2)
2

dxdy =

ż 1

0
dr r

ż 2π

0
dθ (1´ r2)

2

= 2π

ż 1

0
r(1´ r2)

2
dr

= 2π
[r2

2
´ 2

r4

4
+

r6

6

]1

0

=
π

3

and
z̄ =

π/3
π/2

=
2
3

S-28: The equation of the plane is z = f (x, y) = 2´ x´ y. So by (3.3.2) in the CLP-4 text,

n̂ dS =
[´ fx(x, y) ı̂ıı´ fy(x, y) ̂ + k̂

]
dxdy =

[
ı̂ıı + ̂ + k̂

]
dxdy

A point (x, y, z) on the plane lies in the first octant if and only if

x ě 0 and y ě 0 and z = 2´ x´ y ě 0

So the domain of integration is the triangle

T =
 

(x, y)
ˇ

ˇ x ě 0, y ě 0, x + y ď 2
(

x+ y = 2

(2, 0)

(0, 2)

T

x

y

and

ĳ

S

F ¨ n̂ dS =

ĳ

T

[
x ı̂ıı + y ̂ + (

z
hkkkkikkkkj

2´ x´ y) k̂
] ¨ [ı̂ıı + ̂ + k̂

]
dxdy

= 2
ĳ

T

dxdy

= 2
1
2
(2)(2) = 4

S-29: Since

Br
Bu =

(
v2 , 2uv , v

)

Br
Bv =

(
2uv , u2 , u

)

Br
Bu ˆ Br

Bv =
(
u2v , uv2 , ´3u2v2)

(3.3.1) in the CLP-4 text gives

n̂ dS = ˘(u2v , uv2 , ´3u2v2)dudv
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We are told that n̂ should have a positive z-component, so

n̂ dS = ´(u2v , uv2 , ´3u2v2)dudv =
(´ u2v , ´uv2 , 3u2v2)dudv

and

ĳ

S

F ¨ n̂ dS =

ĳ

S

F
hkkkkkkkkikkkkkkkkj

(uv2 , u2v , uv) ¨(´ u2v , ´uv2 , 3u2v2)dudv

=

ż 1

0
du

ż 3

0
dv u3v3 =

[
ż 1

0
du u3

] [
ż 3

0
dv v3

]

=
1
4

34

4
=

81
16

S-30: (a) We start by just sketching the curve z = ey, considering the yz-plane as the plane
x = 0 in R3. This curve is the red curve in the figure below. Concentrate on any one point
on that curve. It is the blue dot at (0, Y, eY) in the figure. When our curve is rotated

z

y

x

p0, Y, eY q

about the y-axis, the blue dot sweeps out a circle. The circle that the blue dot sweeps out

˝ lies in the vertical plane y = Y and
˝ is centred on the y-axis and
˝ has radius eY.

We can parametrize the circle swept out in the usual way. Here is an end view of the
circle (looking down the y-axis), with the parameter, named θ, indicated.

x

z

end view

θ

(0, Y, eY )

eY

(eY sin θ, Y, eY cos θ)
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The coordinates of the red dot are
(
eY sin θ , Y , eY cos θ

)
. This also gives a

parametrization of the surface of revolution

x(Y, θ) = eY sin θ

y(Y, θ) = Y

z(Y, θ) = eY cos θ

0 ď Y ď 1, 0 ď θ ă 2π

Finally here is a sketch of the part of the surface in the first octant, x, y, z ě 0.
z

y

x

x2+z2=ey

(b) We are using the parametrization

r(Y, θ) = eY sin θ ı̂ıı + Y ̂ + eY cos θ k̂ 0 ď Y ď 1, 0 ď θ ď 2π

so that

Br
BY
ˆ Br
Bθ

= det




ı̂ıı ̂ k̂
eY sin θ 1 eY cos θ
eY cos θ 0 ´eY sin θ


 =

(´ eY sin θ, e2Y,´eY cos θ
)
,

and, by (3.3.1) in the CLP-4 text,

dS =
ˇ

ˇ

ˇ

Br
BY
ˆ Br
Bθ

ˇ

ˇ

ˇ
dYdθ =

a

e2Y + e4Y dY dθ = eY
a

1 + e2Y dYdθ

So the integral is

ĳ

S

ey dS =

ż 1

0
dY

ż 2π

0
dθ e2Y

a

1 + e2Y = 2π

ż 1

0
dY e2Y

a

1 + e2Y =
2π

3

[
1 + e2Y

]3/2
ˇ

ˇ

ˇ

ˇ

1

0

=
2π

3

[
(1 + e2)3/2 ´ 23/2

]

(c) Again, we are using the parametrization

r(Y, θ) = eY sin θ ı̂ıı + Y ̂ + eY cos θ k̂ 0 ď Y ď 1, 0 ď θ ď 2π

so that Br
BY
ˆ Br
Bθ

=
(´ eY sin θ, e2Y,´eY cos θ

)
,
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and, by (3.3.1) in the CLP-4 text,

n̂ dS = ˘ Br
BY
ˆ Br
Bθ

dYdθ = ˘(´ eY sin θ, e2Y,´eY cos θ
)

dY dθ

We choose the “+” sign so that n̂ points towards the y-axis. As an example, when
0 ď θ ď π

2 , then z = eY cos θ ą 0 while the z-coordinate of n̂ is ´ey cos θ ă 0. So the
integral is

ĳ

S

F ¨ n̂ dS =

ż 1

0
dY

ż 2π

0
dθ
(

x
hkkikkj

eY sin θ, 0,

z
hkkikkj

eY cos θ
) ¨ (´ eY sin θ, e2Y,´eY cos θ

)

= ´
ż 1

0
dY

ż 2π

0
dθ e2Y = ´2π

ż 1

0
dY e2Y

= ´π
(
e2 ´ 1

)
= π

(
1´ e2)

S-31: Write
V =

 

(x, y, z)
ˇ

ˇ 1 ď x2 + y2 + z2 ď 4
(

The boundary of V consists of two parts — the sphere, S2, of radius 2, centred on the
origin, with (outward) normal n̂ = r

|r| =
r
2 , and the sphere S1 of radius 1, centred on the

origin, with (inward) normal n̂ = ´r, So,
ĳ

BV

F ¨ n̂ dS =

ĳ

S2

r
|r| ¨

r
2

dS´
ĳ

S1

r
|r| ¨ r dS

=

ĳ

S2

dS´
ĳ

S1

dS

= 4π(2)2 ´ 4π(1)2

= 12π

S-32: The part of the cone that has some fixed value, Z, of z with 0 ď Z ď 1 is the part of
the circle

 

(x, y, z)
ˇ

ˇ x2 + y2 = 4Z2, z = Z
(

of radius 2Z that has 0 ď x ď y. Here is a
sketch of the top view of that part of that circle.

y

x

θ

x2 + y2 = 4Z2
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So we can parametrize S by

r(θ, Z) = 2Z sin θ ı̂ıı + 2Z cos θ ̂ + Z k̂ 0 ď θ ď π

4
, 0 ď Z ď 1

So

Br
Bθ

= 2Z cos θ ı̂ıı´ 2Z sin θ ̂

Br
BZ

= 2 sin θ ı̂ıı + 2 cos θ ̂ + k̂

so that

Br
Bθ
ˆ Br
BZ

= det




ı̂ıı ̂ k̂
2Z cos θ ´2Z sin θ 0
2 sin θ 2 cos θ 1


 =

(´ 2Z sin θ,´2Z cos θ, 4Z
)
,

and, by (3.3.1) in the CLP-4 text,

dS =

ˇ

ˇ

ˇ

ˇ

Br
Bθ
ˆ Br
BZ

ˇ

ˇ

ˇ

ˇ

dθdZ =
?

20 Z dθdZ

and
ĳ

S

z2 dS =
?

20
ż 1

0
dZ

ż π/4

0
dθ Z3 =

?
20

π

4
1
4
=

?
5 π

8

S-33: We’ll start by parametrizing S. Note that as x2 + y2 runs from 0 to 4, z runs from 5
to 1, and that, for each fixed 1 ď Z ď 5, the cross-section of S with z = Z is the circle
x2 + y2 = 5´ Z, z = Z. So we may parametrize S by

r(θ, Z) =
?

5´ Z cos θ ı̂ıı +
?

5´ Z sin θ ̂ + Z k̂ 0 ď θ ď 2π, 1 ď Z ď 5

Since

Br
Bθ

= ´?5´ Z sin θ ı̂ıı +
?

5´ Z cos θ ̂

Br
BZ

= ´ 1
2
?

5´ Z
cos θ ı̂ıı´ 1

2
?

5´ Z
sin θ ̂ + k̂

so that

Br
Bθ
ˆ Br
BZ

= det




ı̂ıı ̂ k̂
´?5´ Z sin θ

?
5´ Z cos θ 0

´ 1
2
?

5´Z cos θ ´ 1
2
?

5´Z sin θ 1


 =

(?
5´ Z cos θ ,

?
5´ Z sin θ , 1/2

)
,

(3.3.1) in the CLP-4 text gives

n̂ dS = ˘Br
Bθ
ˆ Br
BZ

dθdZ = ˘(?5´ Z cos θ ,
?

5´ Z sin θ , 1/2
)

dθdZ
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Choosing the minus sign to give the downward pointing normal
ĳ

S

F ¨ n̂ dS

= ´
ż 5

1
dZ

ż 2π

0
dθ
(
´ 1

2

x3
hkkkkkkkkkikkkkkkkkkj

[5´ Z]3/2 cos3 θ´
xy2

hkkkkkkkkkkkkikkkkkkkkkkkkj

[5´ Z]3/2 cos θ sin2 θ , ´1
2

y3
hkkkkkkkkikkkkkkkkj

[5´ Z]3/2 sin3 θ ,

z2
hkkikkj

Z2
)

¨ (?5´ Z cos θ ,
?

5´ Z sin θ , 1/2
)

= ´
ż 5

1
dZ

ż 2π

0
dθ
(
´ 1

2
[5´ Z]2 cos4 θ ´ [5´ Z]2 cos2 θ sin2 θ ´ 1

2
[5´ Z]2 sin4 θ +

1
2

Z2
)

Since
1
2

cos4 θ + cos2 θ sin2 θ +
1
2

sin4 θ =
1
2
(

cos2 θ + sin2 θ
)2

=
1
2

the flux
ĳ

S

F ¨ n̂ dS =

ż 5

1
dZ

ż 2π

0
dθ
(1

2
[5´ Z]2 ´ 1

2
Z2
)
= π

ż 5

1
dZ

(
[5´ Z]2 ´ Z2

)

= π

[
´1

3
[5´ Z]3 ´ Z3

3

]5

1
= π

[
43

3
´ 53

3
+

1
3

]
= ´20 π

S-34: The surface is z = f (x, y) with f (x, y) =
a

2xy. Since fx =
b

y
2x and fy =

b

x
2y ,

(3.3.2) in the CLP-4 text gives

dS =
b

1 + f 2
x + f 2

y dxdy =

c

1 +
y

2x
+

x
2y

dxdy =

d

2xy + y2 + x2

2xy
dxdy

=
x + y
a

2xy
dxdy

On the shell, z2 = 2xy ď 4. So the x and y components of points (x, y, z) on the shell run
over the region x ě 1, y ě 1, xy ď 2, which is sketched below

y = 1

x = 1

xy = 2

x

y
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So the mass is
ĳ

S

ρ(x, y, z) dS =

ż 2

1
dx

ż 2/x

1
dy 3 f (x, y)

x + y
a

2xy
=

ż 2

1
dx

ż 2/x

1
dy 3(x + y)

= 3
ż 2

1
dx

[
xy +

1
2

y2
]2/x

1
= 3

ż 2

1
dx

[
2 +

2
x2 ´ x´ 1

2

]

= 3

#

3
2
´ 2

x

ˇ

ˇ

ˇ

ˇ

2

1
´ x2

2

ˇ

ˇ

ˇ

ˇ

2

1

+

= 3
"

3
2
´ 1 + 2´ 2 +

1
2

*

= 3

S-35: Since x = g(y, z) with g(x, y) = y2 + z2, (3.3.2) in the CLP-4 text gives

n̂ dS = ˘(1,´gy,´gz)dydz = ˘(1,´2y,´2z)dydz

We choose the + sign so that n̂ ¨ ı̂ıı ą 0. Furthermore

S =
 

(x, y, z)
ˇ

ˇ x = y2 + z2, x ď 2y
(

=
 

(x, y, z)
ˇ

ˇ x = y2 + z2, y2 + z2 ď 2y
(

=
 

(x, y, z)
ˇ

ˇ x = y2 + z2, (y´ 1)2 + z2 ď 1
(

=
 

(x, y, z)
ˇ

ˇ x = y2 + z2, (y, z) in D
(

where D =
 

(x, y)
ˇ

ˇ (y´ 1)2 + z2 ď 1
(

is a disk with radius 1. Hence
ĳ

S

F ¨ n̂ dS =

ĳ

D

(2, z, y) ¨ (1,´2y,´2z) dydz =

ĳ

D

(2´ 4yz) dydz

Since ´4yz is odd under z Ñ ´z the integral of ´4yz is zero and
ĳ

S

F ¨ n̂ dS = 2 Area(D) = 2π

S-36: For the specified F and the surface x = f (x, y) = 1´ 1
4 x2 ´ y2, by (3.3.2) in the

CLP-4 text,

n̂ dS =
(´ fx ı̂ıı´ fy ̂ + k̂

)
dxdy =

(x
2

ı̂ıı + 2y ̂ + k̂
)

dxdy

∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

3y2 + z x´ x2 1




= ̂ + (1´ 2x´ 6y) k̂
∇ˆ F ¨ n̂ dS = (2y + 1´ 2x´ 6y)dxdy = (1´ 2x´ 4y)dxdy
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The domain of integration is 1´ 1
4 x2 ´ y2 ě 0 or 1

4 x2 + y2 ď 1. This is an ellipse. Call it D.
So

ĳ

S

∇ˆ F ¨ n̂ dS =

ĳ

D

(1´ 2x´ 4y)dxdy

The integrals over D of x, which is odd under x Ñ ´x, and of y, which is odd under
y Ñ ´y, are both zero. As the ellipse D has area A = π ˆ 2ˆ 1 = 2π

ĳ

S

∇ˆ F ¨ n̂ dS =

ĳ

D

(1´ 2x´ 4y)dxdy = A = 2π

S-37: Due to the symmetry of the surface and the vector field under reflection in the
xy-plane, i.e. under z Ñ ´z, it is sufficient to compute the integral over the upper half of
the surface, where z ě 0, and then multiply the result by 2. The upper half of the surface
consists of two pieces, S1 and S2, where S1 is the part on the sphere and S2 is the part on
the hyperboloid. S1 and S2 intersect on a circle. The circle is obtained by imposing the
two equations x2 + y2 + z2 = 16 and x2 + y2 ´ z2 = 8 simultaneously. Thus we have
x2 + y2 = 12 and z = 2, or in cylindrical coordinates r =

?
12, z = 1, on the circle. Here is

a sketch of a cross-section of the apple core.

z

r

φ1

r =
√
12, z = 2

S1

S2

Let φ1 be the angle between z-axis and the cone formed by connecting the circle to the
origin. We have tan φ1 =

?
12/2 =

?
3. Thus φ1 = π/3.

We’ll use spherical coordinates to compute the flux integral
ť

S1
F ¨ n̂ dS . As the spherical

coordinate ρ = 4 on all of S1, we can paramerize S1 by

r(θ, ϕ) = 4 cos θ sin ϕ ı̂ıı + 4 sin θ sin ϕ ̂ + 4 cos ϕ k̂ 0 ď θ ď 2π, 0 ď φ ď π/3
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So
Br
Bθ

= ´4 sin θ sin ϕ ı̂ıı + 4 cos θ sin ϕ ̂

Br
Bϕ

= 4 cos θ cos ϕ ı̂ıı + 4 sin θ cos ϕ ̂´ 4 sin ϕ k̂

Br
Bθ
ˆ Br
Bϕ

= det




ı̂ıı ̂ k̂
´4 sin θ sin ϕ 4 cos θ sin ϕ 0
4 cos θ cos ϕ 4 sin θ cos ϕ ´4 sin ϕ




= ´16
(

cos θ sin2 ϕ , sin θ sin2 ϕ , sin ϕ cos ϕ
)

= ´4 (sin ϕ) r(θ, ϕ)

and, by (3.3.1) in the CLP-4 text,

n̂ dS = ˘Br
Bθ
ˆ Br
Bϕ

dθdϕ = ¯4 (sin ϕ) r(θ, ϕ)dθdϕ

To get the outward pointing normal, i.e. the normal point in the same direction as r(θ, ϕ),
we take the plus sign. As F = r(θ, ϕ),

F ¨ n̂ dS = 4

42
hkkkikkkj

|r(θ, ϕ)|2 sin ϕ dθ dϕ = 64 sin ϕ dθ dϕ

and
ĳ

S1

F ¨ n̂ dS = 64
ż 2π

0
dθ

ż π/3

0
dϕ sin ϕ = 64 ¨ 2π

[
´ cos ϕ

]π/3

0
= 64π

The surface S2 can be parametrized using the cylindrical coordinates θ and z. Indeed, we
have

r =
b

x2 + y2 = (8 + z2)1/2

for the hyperboloid and we always have x = r cos θ and y = r sin θ. Thus the
hyperboloid has the following parametrization:

R(θ, z) = (8 + z2)1/2 cos θ ı̂ıı + (8 + z2)1/2 sin θ ̂ + z k̂

The range for the parameters of S2 is 0 ď θ ď 2π and 0 ď z ď 2. We have

BR
Bθ

= ´(8 + z2)1/2 sin θ ı̂ıı + (8 + z2)1/2 cos θ ̂ + 0 k̂

BR
Bz

= z(8 + z2)´1/2 cos θ ı̂ıı + z(8 + z2)´1/2 sin θ ̂ + k̂

and

BR
Bθ
ˆ BR
Bz

= det




ı̂ıı ̂ k̂
´(8 + z2)1/2 sin θ (8 + z2)1/2 cos θ 0
z(8 + z2)´1/2 cos θ z(8 + z2)´1/2 sin θ 1




= (8 + z2)1/2 cos θ ı̂ıı + (8 + z2)1/2 sin θ ̂´ z k̂

= x ı̂ıı + y ̂´ z k̂
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Note that BR
Bθ ˆ BR

Bz is pointing downward (since z ą 0) and hence outward. Since

F ¨
(
BR
Bθ ˆ BR

Bz

)
= (x, y, z) ¨ (x, y,´z) = x2 + y2 ´ z2 = 8 on S2, we have

ĳ

S2

F ¨ n̂ dS =

ĳ

S2

F ¨ (Rθ ˆRz) dθ dz =

ż 2

0
dz

ż 2π

0
dθ 8 = 32π

Finally, the flux integral over the whole apple core surface is

2



ĳ

S1

F ¨ n̂ dS +

ĳ

S2

F ¨ n̂ dS


 = 2

(
64π + 32π

)
= 192π

S-38: (a) The specified surface is of the form

G(x, y, z) = x2 + z2 ´ cos2 y = 0

So one normal vector at the point
(1

2 , π
4 , 1

2

)
is

∇∇∇G
(

1
2

,
π

4
,

1
2

)
=
(
2x , 2 sin y cos y , 2z

)ˇ
ˇ

ˇ

(
1
2 , π

4 , 1
2 )

= (1, 1, 1)

and an equation for the tangent plane at
(1

2 , π
4 , 1

2

)
is

(1, 1, 1) ¨ (x´ 1/2 , y´ π/4 , z´ 1/2
)
= 0 or x + y + z = 1 + π/4

(b) For each fixed y, x2 + z2 = cos2 y is a circle of radius | cos y|. So we may parametrize
the surface by

r(θ, y) =
(

cos y cos θ , y , cos y sin θ
)

0 ď θ ă 2π, 0 ď y ď π/2

Then

Br
Bθ

=
(´ cos y sin θ , 0 , cos y cos θ

)

Br
By

=
(´ sin y cos θ , 1 , ´ sin y sin θ

)

Br
Bθ
ˆ Br
By

=
(´ cos y cos θ , ´ sin y cos y , ´ cos y sin θ

)

dS =

ˇ

ˇ

ˇ

ˇ

Br
Bθ
ˆ Br
By

ˇ

ˇ

ˇ

ˇ

dθ dy = cos y
b

1 + sin2 y dθ dy
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So the specified integral is

ĳ

S

sin y dS =

ż π/2

0
dy

ż 2π

0
dθ cos y

b

1 + sin2 y sin y

= 2π

ż π/2

0
dy

b

1 + sin2 y sin y cos y

= π

ż 2

1
du
?

u with u = 1 + sin2 y, du = 2 sin y cos y dy

= π

[
u3/2

3/2

]2

1

=
2π

3
[
2
?

2´ 1
]

S-39: (a) By definition F is a conservative vector field with potential f . Suppose that the
curve C starts at P1, on S, and ends at P2, on S. Then f (P1) = f (P2) = c and, by Theorem
2.4.2 of the CLP-4 text,

ż

C
F ¨ dr = f (P2)´ f (P1) = c´ c = 0

(b) Since F =∇∇∇ f , F is normal to the level surfaces of f by Lemma 2.3.6 of the CLP-4 text.
So, at any point of S, F is a scalar multiple of n̂ and FˆG is perpendicular to n̂. Thus
(FˆG) ¨ n̂ = 0 and

ĳ

S

(FˆG) ¨ n̂ dS = 0.

S-40: (a) (i) Here is a sketch of the part of the plane in question.

(8, 0, 0)

(0, 4, 0)

(0, 0, 16/3)

y

z

x

We can use x and y as parameters. As we can rewrite the equation of the plane as
z = 1

3

(
16´ 2x´ 4y

)
, we have the parametrization

r(x, y) = x ı̂ıı + y ̂ +
1
3
(
16´ 2x´ 4y

)
k̂
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In terms of x and y, the condition z = 1
3

(
16´ 2x´ 4y

) ě 0 is 16´ 2x´ 4y ě 0 or
x + 2y ď 8. So the domain is

 

(x, y)
ˇ

ˇ x ě 0, y ě 0, x + 2y ď 8
(

Renaming x to u and y to v, the parametrization is also

r(u, v) =
(

u , v ,
1
3
(16´ 2u´ 4v)

)
k̂ u ě 0, v ě 0, u + 2v ď 8

(a) (ii) Here is a sketch of the part of the cap in the first octant.
z

y

x

S
x2 + y2 + z2 = 16

z=2
√
2

The full sphere can be parametrized (using spherical coordinates with ρ = 4) by

r(θ, ϕ) = 4 cos θ sin ϕ ı̂ıı + 4 sin θ sin ϕ ̂ + 4 cos ϕ k̂ 0 ď θ ď 2π, 0 ď ϕ ď π

In these coordinates, the condition 4/
?

2 ď z ď 4 is

4?
2
ď 4 cos ϕ ď 4 ðñ 1?

2
ď cos ϕ ď 1

ðñ 0 ď ϕ ď π

4

So our parametrization is

r(θ, ϕ) = 4 cos θ sin ϕ ı̂ıı + 4 sin θ sin ϕ ̂ + 4 cos ϕ k̂ 0 ď θ ď 2π, 0 ď ϕ ď π

4

Renaming θ to u and ϕ to v, the parametrization is also

r(u, v) =
(
4 cos u sin v , 4 sin u sin v , 4 cos v

)
0 ď u ď 2π, 0 ď v ď π

4

(a) (iii) Here is a sketch of the hyperboloid.
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If we use x and y as parameters, then, since z =
a

1 + x2 + y2, we have the
parametrization

r(x, y) = x ı̂ıı + y ̂ +
b

1 + x2 + y2 k̂

In terms of x and y, the condition 1 ď z ď 10 is

1 ď
b

1 + x2 + y2 ď 10 or 0 ď x2 + y2 ď 99

So the domain is
 

(x, y)
ˇ

ˇ x2 + y2 ď 99
(

Renaming x to u and y to v, the parametrization is also

r(u, v) =
(
u , v ,

a

1 + u2 + v2
)

u2 + v2 ď 99

Alternatively, if we replace x and y with the polar coordinates r and θ, we get the
parametrization

r(r, θ) = r cos θ ı̂ıı + r sin θ ̂ +
a

1 + r2 k̂ 0 ď θ ď 2π, 0 ď r ď ?99

Renaming r to u and θ to v, the parametrization is also

r(u, v) =
(
u cos v , u sin v ,

a

1 + u2
)

0 ď v ď 2π, 0 ď u ď ?99

(b) Let’s use the parametrization

r(θ, ϕ) = 4 cos θ sin ϕ ı̂ıı + 4 sin θ sin ϕ ̂ + 4 cos ϕ k̂ 0 ď θ ď 2π, 0 ď ϕ ď π

4

from part (a) (ii), so that

Br
Bθ
ˆ Br
Bϕ

= det




ı̂ıı ̂ k̂
´4 sin θ sin ϕ 4 cos θ sin ϕ 0
4 cos θ cos ϕ 4 sin θ cos ϕ ´4 sin ϕ




= ´16
(

cos θ sin2 ϕ , sin θ sin2 ϕ , sin ϕ cos ϕ
)

and, by (3.3.1) in the CLP-4 text,

dS =
ˇ

ˇ

ˇ

Br
Bθ
ˆ Br
Bϕ

ˇ

ˇ

ˇ
dθdϕ = 16 sin ϕ

b

cos2 θ sin2 ϕ + sin2 θ sin2 ϕ + cos2 ϕ dθdϕ

= 16 sin ϕ dθdϕ

So the area is

Area =

ĳ

S

dS =

ż π/4

0
dϕ

ż 2π

0
dθ 16 sin ϕ = 32π

ż π/4

0
dϕ sin ϕ = 32π

[
´ cos ϕ

]π/4

0

= 32π
[
1´ 1?

2

]
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S-41:

Solution 1 — using tweaked spherical coordinates.

First we have to parametrize S. It is natural to use spherical coordinates with ρ =
?

2.
However if we use the standard spherical coordinates

x =
?

2 sin ϕ cos θ y =
?

2 sin ϕ sin θ z =
?

2 cos ϕ

the condition y ě 1 becomes sin ϕ sin θ ě 1?
2
, which is very complicated. So let’s back up

and think a bit before we compute. The condition z ě 1, as opposed to y ě 1, is easy to
implement in spherical coordinates. It is cos ϕ ě 1?

2
or 0 ď ϕ ď π

4 . So let’s modify
spherical coordinates to make the y-axis play the role of the z-axis, by just exchanging y
and z in the parametrization.

x =
?

2 sin ϕ cos θ y =
?

2 cos ϕ z =
?

2 sin ϕ sin θ

The condition y ě 1 is then
?

2 cos ϕ ě 1, which is turn is 0 ď ϕ ď π
4 . Since we have just

exchanged y and z we could probably just guess n̂ dS and dS from standard spherical
coordinates. (See Appendix F.3 in the CLP-4 text and recall that ρ =

?
2.) But to be on the

safe side, let’s derive them. We are using the parametrization

r(θ, ϕ) =
?

2 sin ϕ cos θ ı̂ıı +
?

2 cos ϕ ̂ +
?

2 sin ϕ sin θ k̂ 0 ď θ ď 2π, 0 ď ϕ ď π

4

Since

Br
Bθ

= ´
?

2 sin ϕ sin θ ı̂ıı +
?

2 sin ϕ cos θ k̂

Br
Bϕ

=
?

2 cos ϕ cos θ ı̂ıı´
?

2 sin ϕ ̂ +
?

2 cos ϕ sin θ k̂

so that

Br
Bθ
ˆ Br
Bϕ

= det




ı̂ıı ̂ k̂

´?2 sin ϕ sin θ 0
?

2 sin ϕ cos θ?
2 cos ϕ cos θ ´?2 sin ϕ

?
2 cos ϕ sin θ




= 2 sin2 ϕ cos θ ı̂ıı + 2 sin ϕ cos ϕ ̂ + 2 sin2 ϕ sin θ k̂

(3.3.1) in the CLP-4 text gives

n̂ dS = ˘Br
Bθ
ˆ Br
Bϕ

dθdϕ = ˘2 sin ϕ
(

sin ϕ cos θ , cos ϕ , sin ϕ sin θ
)

dθdϕ

dS =

ˇ

ˇ

ˇ

ˇ

Br
Bθ
ˆ Br
Bϕ

ˇ

ˇ

ˇ

ˇ

dθdϕ = 2 sin ϕ dθdϕ

Choose the plus sign to give the outward pointing normal.
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(a) The specified integral is

ĳ

S

y3 dS = 2
ż π/4

0
dϕ

ż 2π

0
dθ sin ϕ

y3
hkkkkkkikkkkkkj

(?
2 cos ϕ

)3

= 8
?

2 π

ż π/4

0
dϕ sin ϕ cos3 ϕ

= 8
?

2 π

[
´cos4 ϕ

4

]π/4

0

= 2
?

2 π

[
1´ 1

4

]
=

3?
2

π

(b) The specified integral is
ĳ

S

(
xy ı̂ıı + xz ̂ + zy k̂

) ¨ n̂ dS

= 2
ż π/4

0
dϕ

ż 2π

0
dθ sin ϕ

(
2 sin ϕ cos ϕ cos θ , 2 sin2 ϕ sin θ cos θ , 2 sin ϕ cos ϕ sin θ

)¨
(

sin ϕ cos θ , cos ϕ , sin ϕ sin θ
)

= 4
ż π/4

0
dϕ

ż 2π

0
dθ

!

sin3 ϕ cos ϕ cos2 θ + sin3 ϕ cos ϕ sin θ cos θ + sin3 ϕ cos ϕ sin2 θ
)

= 4

[
ż π/4

0
dϕ sin3 ϕ cos ϕ

] [
ż 2π

0
dθ
(
1 + sin θ cos θ

)
]

= 4

[
sin4 ϕ

4

]π/4

0

[
θ +

sin2 θ

2

]2π

0

= 4ˆ 1
16
ˆ (2π) =

π

2

Solution 2 — parametrizing by x and z.

We can also parametrize S by using x and z as parameters. On S,

˝ y =
?

2´ x2 ´ z2 and
˝ y runs over the range 1 ď y ď ?2. Correspondingly, x2 + z2 = 2´ y2 runs over

0 ď x2 + z2 ď 1

So we can use the parametrization

r(x, z) = x ı̂ıı +
a

2´ x2 ´ z2 ̂ + z k̂ 0 ď x2 + z2 ď 1

Since
Br
Bx

= ı̂ıı´ x?
2´ x2 ´ z2

̂

Br
Bz

= ´ z?
2´ x2 ´ z2

̂ + k̂
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so that

Br
Bx
ˆ Br
Bz

= det




ı̂ıı ̂ k̂
1 ´ x?

2´x2´z2
0

0 ´ z?
2´x2´z2

1




= ´ x?
2´ x2 ´ z2

ı̂ıı´ ̂´ z?
2´ x2 ´ z2

k̂

(3.3.1) in the CLP-4 text gives

n̂ dS = ˘Br
Bx
ˆ Br
Bz

dxdz = ¯
(

x?
2´ x2 ´ z2

, 1 ,
z?

2´ x2 ´ z2

)
dxdz

dS =

ˇ

ˇ

ˇ

ˇ

Br
Bx
ˆ Br
Bz

ˇ

ˇ

ˇ

ˇ

dxdz =

d

1 +
x2 + z2

2´ x2 ´ z2 dxdz =

?
2?

2´ x2 ´ z2
dxdz

Choose the plus sign to give the outward pointing normal.

(a) The specified integral is

ĳ

S

y3 dS =

ĳ

x2+z2ď1

dxdz
?

2?
2´ x2 ´ z2

y3
hkkkkkkkkkikkkkkkkkkj

(
2´ x2 ´ z2)3/2

=
?

2
ĳ

x2+z2ď1

dxdz
(
2´ x2 ´ z2)

Switching to polar coordinates with x = r cos θ and z = r sin θ,
ĳ

S

y3 dS =
?

2
ż 2π

0
dθ

ż 1

0
dr r(2´ r2)

=
?

2 (2π)

[
r2 ´ r4

4

]1

0
=
?

2 (2π)

[
3
4

]
=

3?
2

π

(b) The specified integral is
ĳ

S

(
xy ı̂ıı + xz ̂ + zy k̂

) ¨ n̂ dS

=

ĳ

x2+z2ď1

dxdz
(
x
a

2´ x2 ´ z2 , xz , z
a

2´ x2 ´ z2
)¨

(
x?

2´ x2 ´ z2
, 1 ,

z?
2´ x2 ´ z2

)

=

ĳ

x2+z2ď1

dxdz
 

x2 + xz + z2(
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Switching to polar coordinates with x = r cos θ and z = r sin θ,

ĳ

S

(
xy ı̂ıı + xz ̂ + zy k̂

) ¨ n̂ dS =

ż 2π

0
dθ

ż 1

0
dr r(r2 cos2 θ + r2 sin θ cos θ + r2 sin2 θ)

=

[
ż 1

0
dr r3

] [
ż 2π

0
dθ
(
1 + sin θ cos θ

)
]

=

[
r4

4

]1

0

[
θ +

sin2 θ

2

]2π

0

=
1
4
ˆ (2π) =

π

2

S-42: First observe that,

˝ because (x + y + 1)2 ě 0, all points on (x + y + 1)2 + z2 = 4 have |z| ď 2 and that,
˝ for |z0| ď 2, the surface (x + y + 1)2 + z2 = 4 intersects the horizontal plane z = z0

on (x + y + 1)2 = 4´ z2
0, i.e. on the two lines x + y = ˘

b

4´ z2
0 ´ 1, z = z0.

˝ The line x + y = ˘
b

4´ z2
0 ´ 1, z = z0 intersects the first octant if and only if z0 ě 0

and ˘
b

4´ z2
0 ´ 1 ě 0.

˝ Thus x + y = ´
b

4´ z2
0 ´ 1, z = z0 never intersects the first octant and

˝ x + y =
b

4´ z2
0 ´ 1, z = z0 intersects the first octant if and only if 0 ď z0 ď

?
3.

˝ When z0 = 0, the line x + y =
b

4´ z2
0 ´ 1, z = z0 is x + y = 1, z = 0.

˝ When z0 =
?

3, the line x + y =
b

4´ z2
0 ´ 1, z = z0 is x + y = 0, z = 2.

˝ So as (x, y, z) runs over S , (x, y) runs over the triangle x ě 0, y ě 0, x + y ď 1.

Let G(x, y, z) = (x + y + 1)2 + z2. Then

n̂ dS = ˘ ∇∇∇G
∇∇∇G ¨ k̂ dxdy = ˘2(x + y + 1)ı̂ıı + 2(x + y + 1)̂ + 2zk̂

2z
dxdy

For the downward normal, we need the minus sign, so

F ¨ n̂ dS = ´[xy ı̂ıı + (z´ xy) ̂
] ¨
[ (x + y + 1)ı̂ıı + (x + y + 1)̂ + zk̂

z

]
dxdy

= ´1
z
[
xy(x + y + 1) + (z´ xy)(x + y + 1)

]
dxdy

= ´1
z
[
z(x + y + 1)

]
dxdy

= ´(x + y + 1)dxdy
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The domain of integration is x ě 0, y ě 0, x + y ď 1, so

ĳ

S

F ¨ n̂ dS = ´
ż 1

0
dx

ż 1´x

0
dy (x + y + 1) = ´

ż 1

0
dx
[
(1 + x)(1´ x) +

1
2
(1´ x)2

]

= ´
ż 1

0
dx
[3

2
´ x´ 1

2
x2
]
= ´

[3
2
´ 1

2
´ 1

6

]
= ´5

6

Solutions to Exercises 4.1 — Jump to TABLE OF CONTENTS

S-1: (a) A. The angle between F and dr is less than 90˝ along the entire path. So F ¨ dr ą 0
along the entire path and the work is positive.

(b) B. F is perpendicular to dr along all of C2. So
ş

C2
F ¨ dr = 0.

(c) C. It looks like Px = Qy = 0 at N. So∇∇∇ ¨ F = 0 at N.

(d) A. At Q, the vertical component of F is increasing from left to right (so that Qx ą 0)
and the horizontal component of F is decreasing from bottom to top (so that Py ă 0). So
Qx ´ Py ą 0 at N.

(e) B. At D, the horizontal component of F is increasing from left to right, so that Px ą 0.

S-2: No. The vector field F(x, y, z) = ı̂ıı + y k̂ has

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

1 0 y




= ı̂ıı

has dot product 1 with F(x, y, z) (for all x, y, z) and so is not perpendicular to it.

S-3: (a) By the product rule

∇∇∇ ¨ ( f F) =
B
Bx

( f F1) +
B
By

( f F2) +
B
Bz

( f F3)

= f
BF1

Bx
+ f

BF2

By
+ f

BF3

Bz

+ F1
B f
Bx

+ F2
B f
By

+ F3
B f
Bz

= f ∇∇∇ ¨ F + F ¨∇∇∇ f

322



(b) Again by the product rule

∇∇∇ ¨ (FˆG) =
B
Bx

(F2G3 ´ F3G2) +
B
By

(F3G1 ´ F1G3) +
B
Bz

(F1G2 ´ F2G1)

=
BF2

Bx
G3 ´ BF3

Bx
G2 +

BF3

By
G1 ´ BF1

By
G3 +

BF1

Bz
G2 ´ BF2

Bz
G1

+ F2
BG3

Bx
´ F3

BG2

Bx
+ F3

BG1

By
´ F1

BG3

By
+ F1

BG2

Bz
´ F2

BG1

Bz

=

(BF3

By
´ BF2

Bz

)
G1 +

(BF1

Bz
´ BF3

Bx

)
G2 +

(BF2

Bx
´ BF1

By

)
G3

´ F1

(BG3

By
´ BG2

Bz

)
´ F2

(BG1

Bz
´ BG3

Bx

)
´ F3

(BG2

Bx
´ BG1

By

)

= G ¨ (∇∇∇ˆ F)´ F ¨ (∇∇∇ˆG)

(c) Recall that∇∇∇2( f g) =∇∇∇ ¨ [∇∇∇( f g)
]
. First

∇∇∇( f g) = ı̂ıı
B
Bx

( f g) + ̂
B
By

( f g) + k̂
B
Bz

( f g)

= ı̂ııg
B f
Bx

+ ̂g
B f
By

+ k̂g
B f
Bz

+ ı̂ıı f
Bg
Bx

+ ̂ f
Bg
By

+ k̂ f
Bg
Bz

= g∇∇∇ f + f∇∇∇g

So by part (a), twice,

∇∇∇2( f g) =∇∇∇ ¨ (g∇∇∇ f
)
+∇∇∇ ¨ ( f∇∇∇g

)

= g
(
∇∇∇ ¨∇∇∇ f

)
+
(
∇∇∇g
) ¨ (∇∇∇ f

)
+ f

(
∇∇∇ ¨∇∇∇g

)
+
(
∇∇∇ f
) ¨ (∇∇∇g

)

= f ∇∇∇2g + 2∇∇∇ f ¨∇∇∇g + g∇∇∇2 f

S-4: (a) By definition

∇∇∇ ¨ (x ı̂ıı + y ̂ + z k̂) =
B
Bx
(
x
)
+
B
By
(
y
)
+
B
Bz
(
z
)
= 3

∇∇∇ˆ (x ı̂ıı + y ̂ + z k̂) = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x y z


 = 0
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(b) By definition

∇∇∇ ¨ (xy2ı̂ıı´ yz2 ̂ + zx2k̂) =
B
Bx
(
xy2)+ B

By
(´ yz2)+ B

Bz
(
zx2) = y2 ´ z2 + x2

∇∇∇ˆ (xy2ı̂ıı´ yz2 ̂ + zx2k̂) = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

xy2 ´yz2 zx2


 = 2yz ı̂ıı´ 2xz ̂´ 2xy k̂

(c) By definition

∇∇∇ ¨
(

x
a

x2 + y2
ı̂ıı +

y
a

x2 + y2
̂

)
=
B
Bx

(
x

a

x2 + y2

)
+
B
By

(
y

a

x2 + y2

)

=
1

a

x2 + y2
´ x2

[x2 + y2]3/2 +
1

a

x2 + y2
´ y2

[x2 + y2]3/2

=
x2 + y2 ´ x2 + x2 + y2 ´ y2

[x2 + y2]3/2

=
1

a

x2 + y2

∇∇∇ˆ
(

x
a

x2 + y2
ı̂ıı +

y
a

x2 + y2
̂

)
= det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x?
x2+y2

y?
x2+y2 0




=

(
´ xy

[x2 + y2]3/2 +
xy

[x2 + y2]3/2

)
k̂ = 0

(d) By definition

∇∇∇ ¨
(
´ y
a

x2 + y2
ı̂ıı +

x
a

x2 + y2
̂

)
=
B
Bx

(
´ y
a

x2 + y2

)
+
B
By

(
x

a

x2 + y2

)

=
xy

[x2 + y2]3/2 ´
xy

[x2 + y2]3/2 = 0

∇∇∇ˆ
(
´ y
a

x2 + y2
ı̂ıı +

x
a

x2 + y2
̂

)
= det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

´ y?
x2+y2

x?
x2+y2 0




=

(
1

a

x2 + y2
´ x2

[x2 + y2]3/2 +
1

a

x2 + y2
´ y2

[x2 + y2]3/2

)
k̂

=
x2 + y2 ´ x2 + x2 + y2 ´ y2

[x2 + y2]3/2 k̂ =
k̂

a

x2 + y2
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S-5: (a) We are to compute the divergence of r
r = x ı̂ıı+y ̂+z k̂

[x2+y2+z2]1/2 . Since

B
Bx

x

[x2 + y2 + z2]1/2 =
1

[x2 + y2 + z2]1/2 ´
1
2

x(2x)

[x2 + y2 + z2]3/2 =
y2 + z2

[x2 + y2 + z2]3/2

B
By

y

[x2 + y2 + z2]1/2 =
1

[x2 + y2 + z2]1/2 ´
1
2

y(2y)

[x2 + y2 + z2]3/2 =
x2 + z2

[x2 + y2 + z2]3/2

B
Bz

z

[x2 + y2 + z2]1/2 =
1

[x2 + y2 + z2]1/2 ´
1
2

z(2z)

[x2 + y2 + z2]3/2 =
x2 + y2

[x2 + y2 + z2]3/2

the specified divergence is

∇∇∇
( r

r

)
=

2x2 + 2y2 + 2z2

[x2 + y2 + z2]3/2 =
2r2

r3 =
2
r

(b)

∇∇∇ˆ (yz ı̂ıı + 2xz ̂ + exy k̂
)
= det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

yz 2xz exy


 =

(
xexy ´ 2x

)
ı̂ıı´ (yexy ´ y

)
̂ + z k̂

S-6: (a) Since rk =
(
x2 + y2 + z2)k/2,

B
Bx

rk = 2x
k
2
(
x2 + y2 + z2) k

2´1
= k (r ¨ ı̂ıı) rk´2

B
By

rk = 2y
k
2
(
x2 + y2 + z2) k

2´1
= k (r ¨ ̂) rk´2

B
Bz

rk = 2z
k
2
(

x2 + y2 + z2) k
2´1

= k (r ¨ k̂) rk´2

We want k = ´3.

(b) Using the computation in part (a)

∇∇∇ ¨ (rkr) =
B
Bx

(xrk) +
B
By

(yrk) +
B
Bz

(zrk)

= 3rk + x
B
Bx

rk + y
B
By

rk + z
B
Bz

rk

= 3rk + x
(
kx rk´2)+ y

(
ky rk´2)+ z

(
kz rk´2)

=
(
3 + k

)
rk

We want k = 2.

(c) Recalling that∇∇∇2 =∇∇∇ ¨∇∇∇,

∇∇∇2(rk) =∇∇∇ ¨ (∇∇∇(rk)
)

=∇∇∇ ¨ (krk´2 r) by part (a)

= k(3 + k´ 2)rk´2 by part (b), but with k replaced by k´ 2
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We want k = ´2.

S-7: (a)

∇∇∇ ¨ r = Bx
Bx

+
By
By

+
Bz
Bz

= 3

(b)

∇∇∇(r2) =

(
ı̂ıı
B
Bx

+ ̂
B
By

+ k̂
B
Bz

) (
x2 + y2 + z2) = 2x ı̂ıı + 2y ̂ + 2 k̂ = 2r

(c) Since

rˆ a = det




ı̂ıı ̂ k̂
x y z
a1 a2 a3


 = ı̂ıı

(
a3y´ a2z

)
+ ̂
(
a1z´ a3x

)
+ k̂

(
a2x´ a1y

)

we have

∇∇∇ˆ (rˆ a) = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

a3y´ a2z a1z´ a3x a2x´ a1y


 = ´2a1 ı̂ıı´ 2a2 ̂´ 2a3 k̂

= ´2a

(d) Since

∇∇∇(r) =
(

ı̂ıı
B
Bx

+ ̂
B
By

+ k̂
B
Bz

) (
x2 + y2 + z2)1/2

= ı̂ıı
x

(
x2 + y2 + z2

)1/2 + ̂
y

(
x2 + y2 + z2

)1/2 + k̂
x

(
x2 + y2 + z2

)1/2

we have

∇∇∇ ¨ (∇∇∇(r)) = B
Bx

x
(
x2 + y2 + z2

)1/2 +
B
By

y
(
x2 + y2 + z2

)1/2 +
B
Bz

z
(
x2 + y2 + z2

)1/2

=
3

(
x2 + y2 + z2

)1/2 ´
1
2

2x2 + 2y2 + 2z2

(
x2 + y2 + z2

)3/2 =
2

(
x2 + y2 + z2

)1/2 =
2
r

S-8: (a) Since

∇∇∇
(

1
r

)
=

(
ı̂ıı
B
Bx

+ ̂
B
By

+ k̂
B
Bz

) (
x2 + y2 + z2)´1/2

= ´ı̂ıı
x

(
x2 + y2 + z2

)3/2 ´ ̂
y

(
x2 + y2 + z2

)3/2 ´ k̂
z

(
x2 + y2 + z2

)3/2

= ´ı̂ıı
x
r3 ´ ̂

y
r3 ´ k̂

x
r3
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we have a = ´3.

(b) Since

∇∇∇ ¨ (r r
)
=
B
Bx

[(
x2 + y2 + z2)1/2x

]
+
B
By

[(
x2 + y2 + z2)1/2y

]
+
B
Bz

[(
x2 + y2 + z2)1/2z

]

= 3
(
x2 + y2 + z2)1/2

+
1
2

2x2 + 2y2 + 2z2

(
x2 + y2 + z2

)1/2 = 4
(
x2 + y2 + z2)1/2

= 4r

we have a = 4.

(c) Since

∇∇∇(r3) =

(
ı̂ıı
B
Bx

+ ̂
B
By

+ k̂
B
Bz

) (
x2 + y2 + z2)3/2

= ı̂ıı 3x
(
x2 + y2 + z2)1/2

+ ̂ 3y
(
x2 + y2 + z2)1/2

+ k̂ 3z
(
x2 + y2 + z2)1/2

= 3rr

we have

∇∇∇ ¨ (∇∇∇(r3)
)
=∇∇∇ ¨ (3rr

)
= 3∇∇∇ ¨ (rr

)
= 3

(
4r
)

by part (b)

= 12r

so that a = 12.

S-9: (a) Since∇∇∇ ¨ F = B
Bx (1 + yz) + B

By (2y + zx) + B
Bz (3z2 + xy) = 2 + 6z ‰ 0, F fails the

screening test and cannot have a vector potential.

(b) The vector field A = A1ı̂ıı + A2 ̂ is a vector potential for G if and only if G =∇∇∇ˆA,
which is the case if and only if

´BA2

Bz
= yz ðñ A2 = ´1

2
yz2 + B2(x, y)

BA1

Bz
= zx ðñ A1 =

1
2

xz2 + B1(x, y)

BA2

Bx
´ BA1

By
= xy ðñ BB2

Bx
´ BB1

By
= xy

There are infinitely many solutions to BB2
Bx ´ BB1

By = xy. In fact B2 is completely arbitrary. If

one chooses B2 = 0, then B1 = ´1
2 xy2 does the job. If one chooses B1 = 0, then B2 = 1

2 x2y
does the job. Thus two solutions are A = 1

2(z
2 ´ y2)xı̂ıı´ 1

2 yz2 ̂ and
A = 1

2 xz2ı̂ıı + 1
2(x2 ´ z2)ŷ.

S-10: (a) F is well-defined wherever the denominator x2 + z2 is nonzero. So the (largest
possible) domain is

D =
 

(x, y, z)
ˇ

ˇ x2 + z2 ‰ 0
(
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(b) As preliminary computations, let’s find

B
Bz

( ´z
x2 + z2

)
=

´1
x2 + z2 ´

2z(´z)

(x2 + z2)2 =
´x2 + z2

(x2 + z2)2

B
Bx

(
x

x2 + z2

)
=

1
x2 + z2 ´

2x(x)

(x2 + z2)2 =
´x2 + z2

(x2 + y2)2

So the curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

´z
x2+z2 y x

x2+z2


 = ´

(
´x2 + z2

(x2 + y2)2 ´
´x2 + z2

(x2 + y2)2

)
̂ = 0

on the domain of F.

(c) As preliminary computations, let’s find

B
Bx

( ´z
x2 + z2

)
= ´ 2x(´z)

(x2 + z2)2 =
2xz

(x2 + z2)2

B
Bz

(
x

x2 + z2

)
= ´ 2z(x)

(x2 + z2)2 =
´2xz

(x2 + y2)2

So the divergence of F is

∇∇∇ ¨ F =
B
Bx

( ´z
x2 + z2

)
+
B
By

(y) +
B
Bz

(
x

x2 + z2

)
= 1

(d) By part (b), the vector field passes the conservative field screening test∇∇∇ˆ F = 0. But
we should still be suspicious because of the similarity of F to the vector field of Examples
2.3.14 and 4.3.8 in the CLP-4 text.

So let’s compute the line integral of F around the (closed) circle y = 0, x2 + z2 = 1,
parametrized by

r(t) = cos t ı̂ıı + sin t k̂ r1(t) = ´ sin t ı̂ıı + cos t k̂

The line integral is

ż

C
F ¨ dr =

ż 2π

0

 

´z
x2+z2
hkkikkj

´ sin t ı̂ıı +

x
x2+y2
hkkikkj

cos t k̂
( ¨  

r1(t)
hkkkkkkkkkikkkkkkkkkj

´ sin t ı̂ıı + cos t k̂
(

dt

=

ż 2π

0
dt = 2π

As the integral of F around the simple closed curve C is not zero, F cannot be
conservative on D. See Theorem 2.4.6 and Examples 2.3.14 and 4.3.8 in the CLP-4 text.
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S-11: (a) By the vector identity of Theorem 4.1.7.a in the CLP-4 text,

∇ ¨ F = ∇ ¨∇ˆG = 0

So we must have

0 = ∇ ¨ F = ∇ ¨ ((xz + xy)ı̂ıı + α(yz´ xy)̂ + β(yz + xz)k̂
)
= (z + y) + α(z´ x) + β(y + x)

This is true for all (x, y, z) if and only if α = β = ´1.

(b) Since

∇ˆG = ∇ˆ (xyzı̂ıı´ xyẑ + g(x, y, z)k̂
)
= (gy + xy) ı̂ıı´ (gx ´ xy) hj + (´yz´ xz) k̂

we will have that ∇ˆG = F if and only if

(gy + xy) ı̂ıı´ (gx ´ xy) ̂ + (´yz´ xz) k̂ = (xz + xy) ı̂ıı´ (yz´ xy) ̂´ (yz + xz) k̂

which is the case if and only if
gy = xz, gx = yz

The first equation, gy = xz, is satisfied if and only if g = xyz + h(x, z). The second
equation is also satisfied if and only if gx = yz + hx(x, z) = yz. This is the case if and only
if hx(x, z) = 0. That is, if and only if h is independent of x. Equivalently, if and only if
h(x, z) = w(z) for some function w(z). So, in fact, any function of the form
g(x, y, z) = xyz + w(z) will work.

S-12: (a) Denote by θ the angle between â and r. The point r is a distance ` = |r| sin θ
from the axis of rotation. So as the body rotates, the point sweeps out a circle of radius `
centred on the axis of rotation. In one second the point sweeps out an arc of this circle

r

v

0

â
Ω

θ

that subtends an angle of Ω radians. This arc is the fraction Ω
2π of a full circle and so has

length Ω
2π 2π` = Ω` = Ω|r| sin θ. Thus the point is moving with speed Ω|r| sin θ. The

velocity vector of the point must have length Ω|r| sin θ and direction perpendicular to
both â and r. The vector ΩΩΩˆ r is perpendicular to both r and ΩΩΩ = Ωâ and has length
|ΩΩΩ| |r| sin θ = Ω|r| sin θ as desired. So the velocity vector is either ΩΩΩˆ r or its negative.
By the right hand rule it is ΩΩΩˆ r.

(b) By vector identities

∇∇∇ ¨ (FˆG) = G ¨ (∇∇∇ˆ F)´ F ¨ (∇∇∇ˆG)

∇∇∇ˆ (FˆG) = F(∇∇∇ ¨G)´ (∇∇∇ ¨ F)G + (G ¨∇∇∇)F´ (F ¨∇∇∇)G
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(which are Theorems 4.1.4(d) and 4.1.5(d) in the CLP-4 text) and the assumption that ΩΩΩ is
constant

∇∇∇ˆ (ΩΩΩˆ r) = ΩΩΩ(∇∇∇ ¨ r)´ (∇∇∇ ¨ΩΩΩ)r + (r ¨∇∇∇)ΩΩΩ´ (ΩΩΩ ¨∇∇∇)r = ΩΩΩ(∇∇∇ ¨ r)´ (ΩΩΩ ¨∇∇∇)r
∇∇∇ ¨ (ΩΩΩˆ r) = r ¨ (∇∇∇ˆΩΩΩ)´ΩΩΩ ¨ (∇∇∇ˆ r) = ´ΩΩΩ ¨ (∇∇∇ˆ r)

Substituting in

∇∇∇ ¨ r = Bx
Bx

+
By
By

+
Bz
Bz

= 3

∇∇∇ˆ r =
(Bz
By
´ By
Bz
)
ı̂ıı +
(Bx
Bz
´ Bz
Bx
)
̂ +
(By
Bx
´ Bx
By
)
k̂ = 0

(ΩΩΩ ¨∇∇∇)r = (Ω1
B
Bx

+ Ω2
B
By

+ Ω3
B
Bz
)(

xı̂ıı + ŷ + zk̂
)
= Ω1ı̂ıı + Ω2 ̂ + Ω3k̂ = ΩΩΩ

gives
∇∇∇ˆ (ΩΩΩˆ r) = 2 ΩΩΩ ∇∇∇ ¨ (ΩΩΩˆ r) = 0

(c) The students are a distance 6378 sin(90˝ ´ 49˝) = 6378 cos(49˝) = 4184 km from the
axis of rotation. The rate of rotation is Ω = 2π

24 radians per hour. In each hour the
students sweep out an arc of 2π

24 radians from a circle of radius 4184 km. Their speed is
2π
24 ˆ 4184 = 1095km/hr.

S-13: We shall show that BG3
By ´ BG2

Bz = F1. The other components are similar. First we have

t F
(
r(t)

)ˆ dr
dt

(t) = t F
(
tx, ty, tz

)ˆ (x ı̂ıı + y ̂ + z k̂
)
= t det




ı̂ıı ̂ k̂
F1 F2 F3
x y z




Reading off the k̂ and ̂ components of the determinant gives

G3(x, y, z) =
ż 1

0
t
[
F1
(
tx, ty, tz

)
y´ F2

(
tx, ty, tz

)
x
]

dt

G2(x, y, z) =
ż 1

0
t
[
F3
(
tx, ty, tz

)
x´ F1

(
tx, ty, tz

)
z
]

dt

So

BG3

By
=

ż 1

0
t
[

F1
(
tx, ty, tz

)
+
BF1

By
(
tx, ty, tz

)
ty´ BF2

By
(
tx, ty, tz

)
tx
]

dt

BG2

Bz
=

ż 1

0
t
[BF3

Bz
(
tx, ty, tz

)
tx´ BF1

Bz
(
tx, ty, tz

)
tz´ F1

(
tx, ty, tz

)]
dt

ñ BG3

By
´ BG2

Bz
=

ż 1

0

[
2t F1

(
tx, ty, tz

)
+ t2y

BF1

By
(
tx, ty, tz

)
+ t2z

BF1

Bz
(
tx, ty, tz

)

´ t2x
BF2

By
(
tx, ty, tz

)´ t2x
BF3

Bz
(
tx, ty, tz

)]
dt
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Since, by hypothesis,∇∇∇ ¨ F = BF1
Bx + BF2

By + BF3
Bz = 0, the last two terms

´t2x
!BF2

By
(
tx, ty, tz

)
+
BF3

Bz
(
tx, ty, tz

))
= ´t2x

!

´ BF1

Bx
(
tx, ty, tz

))

so that

BG3

By
´ BG2

Bz

=

ż 1

0

[
2tF1

(
tx, ty, tz

)
+ t2x

BF1

Bx
(
tx, ty, tz

)
+ t2y

BF1

By
(
tx, ty, tz

)
+ t2z

BF1

Bz
(
tx, ty, tz

)]
dt

=

ż 1

0

d
dt

[
t2F1(tx, ty, tz)

]
dt =

[
t2F1(tx, ty, tz)

]t=1

t=0
= F1(x, y, z)

Solutions to Exercises 4.2 — Jump to TABLE OF CONTENTS

S-1: (a) Expressing the left hand side as an iterated integral, with z as the innermost
integration variable, we have

¡

V

B f
Bz

(x, y, z) dx dy dz =

ż 1

0
dx

ż 1

0
dy

[
ż 1

0
dz
B f
Bz

(x, y, z)

]

=

ż 1

0
dx

ż 1

0
dy
[

f (x, y, 1)´ f (x, y, 0)
]

by the fundamental theorem of calculus

=

ĳ

R

[
f (x, y, 1)´ f (x, y, 0)

]
dx dy

=

ĳ

R

f (x, y, 1) dx dy´
ĳ

R

f (x, y, 0) dx dy

(b) Define the vector field F(x, y, z) = f (x, y, z) k̂. Then the divergence of F is
∇∇∇ ¨ F(x, y, z) = B f

Bz (x, y, z). The boundary of the cube V is the union of six faces

S1 =
 

(x, y, z)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1, z = 1
(

with outward normal n̂ = k̂

S2 =
 

(x, y, z)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1, z = 0
(

with outward normal n̂ = ´k̂

S3 =
 

(x, y, z)
ˇ

ˇ 0 ď x ď 1, 0 ď z ď 1, y = 1
(

with outward normal n̂ = ̂

S4 =
 

(x, y, z)
ˇ

ˇ 0 ď x ď 1, 0 ď z ď 1, y = 0
(

with outward normal n̂ = ´̂

S5 =
 

(x, y, z)
ˇ

ˇ 0 ď y ď 1, 0 ď z ď 1, x = 1
(

with outward normal n̂ = ı̂ıı

S6 =
 

(x, y, z)
ˇ

ˇ 0 ď y ď 1, 0 ď z ď 1, x = 0
(

with outward normal n̂ = ´ı̂ıı
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n̂ = k̂

n̂ = −k̂

n̂ = ̂n̂ = −̂

(0, 1, 1)

(1, 1, 0)

S1

S2

y

z

x

Observe that

F ¨ n̂ = f k̂ ¨ n̂ =

$

’

&

’

%

+ f on S1

´ f on S2

0 on S3, S4, S5, S6

So the divergence theorem gives
¡

V

B f
Bz

(x, y, z) dx dy dz =

¡

V

∇∇∇ ¨ F(x, y, z) dx dy dz

=

ĳ

BV

F ¨ n̂ dS =
6
ÿ

j=1

ĳ

Sj

F ¨ n̂ dS

=

ĳ

S1

f dS´
ĳ

S2

f dS

=

ĳ

R

f (x, y, 1) dx dy´
ĳ

R

f (x, y, 0) dx dy

S-2: (a) The divergence of φ a is∇∇∇ ¨ (φ a) =∇∇∇φ ¨ a + φ∇∇∇ ¨ a =∇∇∇φ ¨ a, since a is constant.
So, by the divergence theorem,

ĳ

BV

φ a ¨ n̂ dS =

¡

V

∇∇∇ ¨ (φ a) dV =

¡

V

∇∇∇φ ¨ a dV ùñ


ĳ

BV

φn̂ dS´
¡

V

∇∇∇φ dV


 ¨ a = 0

This is true for all vectors a. In particular, applying this with a = ı̂ıı, ̂, k̂, we have that all
three components of

[ť
BV φn̂ dS´ţ

V∇∇∇φ dV
]

are zero. So
ĳ

BV

φ n̂ dS´
¡

V

∇∇∇φ dV = 0

(b) By part (a), with φ = x2 + y2 + z2 and∇∇∇φ = 2x ı̂ıı + 2y ̂ + 2x k̂,

1
2|V|

ĳ

BV

(x2 + y2 + z2) n̂ dS =
1

2|V|
¡

V

(2x ı̂ıı + 2y ̂ + 2z k̂)dV = (x̄, ȳ, z̄)
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S-3: (a) We’ll parametrize the sphere using the spherical coordinates θ and ϕ.

x = sin ϕ cos θ

y = sin ϕ sin θ

z = cos ϕ

with 0 ď θ ď 2π, 0 ď ϕ ď π. Since
(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
=
(´ sin ϕ sin θ , sin ϕ cos θ , 0

)

( Bx
Bϕ

,
By
Bϕ

,
Bz
Bϕ

)
= (cos ϕ cos θ , cos ϕ sin θ , ´ sin ϕ)

(3.3.1) in the CLP-4 text yields

n̂ dS = ˘
(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
ˆ
( Bx
Bϕ

,
By
Bϕ

,
Bz
Bϕ

)
dθdϕ

= ˘(´ sin ϕ sin θ , sin ϕ cos θ , 0
)ˆ (cos ϕ cos θ , cos ϕ sin θ , ´ sin ϕ) dθdϕ

= ˘(´ sin2 ϕ cos θ , ´ sin2 ϕ sin θ , ´ sin ϕ cos ϕ
)

dθdϕ

= ¯ sin ϕ
(

sin ϕ cos θ , sin ϕ sin θ , cos ϕ
)

dθdϕ

= ¯ sin ϕ
(
x(θ, ϕ) , y(θ, ϕ) , z(θ, ϕ)

)
dθdϕ

To get an outward pointing normal we need the + sign, since then n̂(θ, ϕ) is a positive
multiple, namely sin ϕ, times r(θ, ϕ). So, on S,

F ¨ n̂ dS = sin ϕ

F
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj(

sin ϕ cos θ , sin ϕ sin θ , cos2 ϕ
) ¨( sin ϕ cos θ , sin ϕ sin θ , cos ϕ

)
dθdϕ

= sin ϕ
(

sin2 ϕ cos2 θ + sin2 ϕ sin2 θ + cos3 ϕ
)

and
ĳ

S

F ¨ n̂ dS =

ż π

0
dϕ

ż 2π

0
dθ sin ϕ

(
sin2 ϕ cos2 θ + sin2 ϕ sin2 θ + cos3 ϕ

)

=

ż π

0
dϕ

ż 2π

0
dθ
(

sin3 ϕ + sin ϕ cos3 ϕ
)

= 2π

"
ż π

0
dϕ sin3 ϕ +

[
´1

4
cos4 ϕ

]π

0

*

= 2π

ż π

0
dϕ sin ϕ(1´ cos2 ϕ) = 2π

[
´ cos ϕ +

1
3

cos3 ϕ

]π

0
= 2π

[
4
3

]

=
8π

3

(b) Let V be the interior of S. Then, by the divergence theorem,
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV =

¡

V

(1 + 1 + 2z) dV

333



By oddness under z Ñ ´z, the z integral vanishes, so that
ĳ

S

F ¨ n̂ dS = 2
¡

V

dV = 2 Volume(V) = 2
4π

3
=

8π

3

S-4: (a) Let’s use spherical coordinates. As S is the sphere of radius a centred on the
origin, we can parametrize it by

r(θ, ϕ) = a sin ϕ cos θ ı̂ıı + a sin ϕ sin θ ̂ + a cos ϕ k̂
Br
Bθ

= ´a sin ϕ sin θ ı̂ıı + a sin ϕ cos θ ̂

Br
Bϕ

= a cos ϕ cos θ ı̂ıı + a cos ϕ sin θ ̂´ a sin ϕ k̂

n̂ dS = ˘Br
Bθ
ˆ Br
Bϕ

dθ dϕ

= det




ı̂ıı ̂ k̂
´a sin ϕ sin θ a sin ϕ cos θ 0
a cos ϕ cos θ a cos ϕ sin θ ´a sin ϕ


dθ dϕ

= ˘
(
´ a2 sin2 ϕ cos θ ı̂ıı´ a2 sin2 ϕ sin θ ̂´ a2 sin ϕ cos ϕ k̂

)
dθ dϕ

= ¯a2 sin ϕ
(

sin ϕ cos θ ı̂ıı + sin ϕ sin θ ̂ + cos ϕ k̂
)

dθ dϕ

For the outward normal, we want the + sign, so

n̂ dS = a2 sin ϕ
(

sin ϕ cos θ ı̂ıı + sin ϕ sin θ ̂ + cos ϕ k̂
)

dθ dϕ

F ¨ n̂ dS = z(θ, ϕ) k̂ ¨ n̂ dS = a3 sin ϕ cos2 ϕ dθ dϕ

and
ĳ

S

F ¨ n̂ dS = a3
ż π

0
dϕ

ż 2π

0
dθ sin ϕ cos2 ϕ

= 2πa3
ż π

0
dϕ sin ϕ cos2 ϕ = 2πa3

[
´1

3
cos3 ϕ

]π

0

=
4
3

πa3

(b) Call the solid x2 + y2 + z2 ď a2, V. As

∇∇∇ ¨ F =
B
Bx

(0) +
B
By

(0) +
B
Bz

(z) = 1

the divergence theorem gives
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV =

¡

V

dV = Volume(V) =
4
3

πa3
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S-5: (a) On D, z = 0 and

n̂ = ´k̂ dS = dx dy F ¨ n̂ = ´y2

so that
ĳ

D

F ¨ n̂ dS = ´
ĳ

D

y2 dx dy

Switching to polar coordinates

ĳ

D

F ¨ n̂ dS = ´
ż 3

0
dr r

ż 2π

0
dθ
(
r sin θ

)2
= ´

[
ż 3

0
dr r3

] [
ż 2π

0
dθ sin2 θ

]

= ´34

4

[
ż 2π

0
dθ

1´ cos(2θ)

2

]
= ´81

4

[
θ

2
´ sin(2θ)

4

]2π

0
= ´81

4
π

For an efficient, sneaky, way to evaluate
ş2π

0 sin2 θ dθ, see Example 2.4.4 in the CLP-4 text.

(b) Observe that∇∇∇ ¨ F = x + 2. Since x is odd and V is invariant under x Ñ ´x, we have
ţ

V x dV = 0 (more details below) so that

¡

V

∇∇∇ ¨ F dV =

¡

V

(x + 2)dV = 2
¡

V

dV = 2|V|

Here are two more detailed arguments showing that
ţ

V x dV = 0.

Argument 1: We may rewrite the equation z = 9´x2´y2

9+x2+y2 of the curved boundary of V as

z(9 + x2 + y2) = 9´ x2 ´ y2 ðñ x2 + y2 =
9(1´ z)

1 + z

This is the equation of the circle of radius r(z) =
b

9(1´z)
1+z centred on x = y = 0. So z runs

from 0 to 1, and for each fixed 0 ď z ď 1, y runs from ´r(z) to r(z) and, for each fixed y
and z, x runs from ´ar(z)2 ´ y2 to

a

r(z)2 ´ y2. So

¡

V

x dV =

ż 1

0
dz

ż r(z)

´r(z)
dy

ż

?
r(z)2´y2

´
?

r(z)2´y2
dx x =

ż 1

0
dz

ż r(z)

´r(z)
dy 0 = 0

since
şa
´a x dx = 0 for any a ą 0.

Argument 2: As we have observed above, the curved boundary of V is x2 + y2 = 9(1´z)
1+z

which is invariant under rotations about the z–axis. By that symmetry, the centroid of V
lies on the z-axis. Recall that, for any solid V, the centroid of V is (x̄, ȳ, z̄) with

x̄ =

ţ

V xdV
ţ

V dV
ȳ =

ţ

V ydV
ţ

V dV
z̄ =

ţ

V zdV
ţ

V dV
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So
¡

V

x dV = x̄ Volume(V) = 0 and
¡

V

y dV = ȳ Volume(V) = 0

(c) By the divergence theorem,
¡

V

∇∇∇ ¨ F dV =

ĳ

BV

F ¨ n̂ dS =

ĳ

S

F ¨ n̂ dS +

ĳ

D

F ¨ n̂ dS

so that
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

D

F ¨ n̂ dS = 2|V|+ 81
4

π

S-6: (a) Let G(x, y, z) = x2 + y2 + z. Then the surface is G(x, y, z) = 1 and
∇∇∇G(x, y, z) = 2x ı̂ıı + 2y ̂ + k̂ so that, by (3.3.3) in the CLP-4 text,

n̂ dS =
∇∇∇G
∇∇∇G ¨ k̂ dx dy =

2x ı̂ıı + 2y ̂ + k̂
1

dx dy = (2x ı̂ıı + 2y ̂ + k̂)dx dy

F ¨ n̂ dS =
[
x ı̂ıı + y ̂ + k̂

] ¨ [2x ı̂ıı + 2y ̂ + k̂
]

dx dy =
[
2x2 + 2y2 + 1

]
dx dy

Switching to polar coordinates
ĳ

S

F ¨ n̂ dS =

ż 1

0
dr r

ż 2π

0
dθ (2r2 + 1) = 2π

[
2
4

r4 +
1
2

r2
]1

0
= 2π

(b) Call the solid 0 ď z ď 1´ x2 ´ y2, V.
z

y

x

z = 1− x2 − y2

x2 + y2 = 1

D

S

Let D denote the bottom surface of V. The disk D has radius 1, area π, z = 0 and
outward normal ´k̂, so that

ĳ

D

F ¨ n̂ dS = ´
ĳ

D

F ¨ k̂ dx dy = ´
ĳ

D

dx dy = ´π

As
∇∇∇ ¨ F =

B
Bx

(x) +
B
By

(y) +
B
Bz

(1) = 2
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the divergence theorem gives
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

D

F ¨ n̂ dS =

¡

V

2 dV ´ (´π) = π + 2
¡

V

dV

To evaluate the volume
ţ

V dV, we slice the V into thin horizontal pancakes. Here is a
sketch of the pancake at height z.

z

y

x

x2 + y2 = 1− z

D

Its cross-section is a circular disk of radius
?

1´ z, and hence of area π(1´ z). As the
pancake has thickness dz, it has volume π(1´ z)dz. So

ĳ

S

F ¨ n̂ dS = π + 2
ż 1

0
dz

ĳ

x2+y2ď1´z

dx dy = π + 2
ż 1

0
dz π(1´ z)

= π + 2π

[
z´ 1

2
z2
]1

0
= 2π

S-7: (a) The divergence is

∇∇∇ ¨ F =
B
Bx
(
z + sin y

)
+
B
By

(zy) +
B
Bz
(

sin x cos y
)

= z

(b) Let

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 ď 9
(

By the divergence theorem (assuming that we are to find the outward flux),
ĳ

BV

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV =

¡

V

z dV = 0

since z is odd.
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S-8: Call the silo V. Call the sides and top of the silo S. Call the base of the silo (namely,
x2 + y2 ď 1, z = 0) B. By the divergence theorem,

ĳ

S

V ¨ n̂ dS +

ĳ

B

V ¨ (´k̂) dS =

¡

V

∇∇∇ ¨V dV

ĳ

S

V ¨ n̂ dS´
ĳ

x2+y2ď1

(x2 + y) dx dy =

¡

V

(2xyz + z) dV

By oddness under Y Ñ ´y,
ť

x2+y2ď1 y dx dy =
ţ

V xyz dV = 0, so

ĳ

S

V ¨ n̂ dS =

ĳ

x2+y2ď1

x2 dx dy +

¡

V

z dV

=

ż 1

0
dr

ż 2π

0
dθ r (

x
hkkikkj

r cos θ)2 +

¡

V

z dV

We can evaluate the volume integral by decomposing V into thin horizontal pancakes.
See Section 1.6 in the CLP-2 text. For 0 ď z ď 1, the horizontal cross-section of the silo at
height z is a circle of radius 1 and hence of area π. For z ě 1, the horizontal cross-section
of the silo at height z is again a circle. Its radius is determined by the equation
x2 + y2 + z2 = 2 of the top of the silo. The radius is

?
2´ z2, so the cross-section has area

π(2´ z2). The biggest that z can get is
?

2. Thus

ĳ

S

V ¨ n̂ dS =

ż 1

0
dr

ż 2π

0
dθ r (r cos θ)2 +

ż 1

0
dz πz +

ż

?
2

1
dz π(2´ z2)z

=

[
ż 1

0
dr r3

] [
ż 2π

0
dθ

cos(2θ) + 1
2

]
+

ż 1

0
dz πz +

ż

?
2

1
dz π(2´ z2)z

=

[
r4

4

]1

0
π +

[
π

z2

2

]1

0
+ π

[
z2 ´ z4

4

]?2

1

=
π

4
+

π

2
+ π

[
1´ 3

4

]

= π

For an efficient, sneaky, way to evaluate
ş2π

0 cos2 θ dθ, see Example 2.4.4 in the CLP-4 text.

S-9: Apply the divergence theorem. The divergence of F is

∇∇∇ ¨ F =
B
Bx

(x2) +
B
By

(xy) +
B
Bz

(3z´ yz) = 3 + 3x´ y
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So
ĳ

S

F ¨ n̂ dS =

¡

B

∇∇∇ ¨ F dV =

¡

B

(3 + 3x´ y) dV

To evaluate the integrals of x and y we use that, for any solid V in R3,

¡

V

dV = Volume(V) x̄ =

ţ

V x dV
Volume(V) ȳ =

ţ

V y dV
Volume(V) z̄ =

ţ

V z dV
Volume(V)

where (x̄, ȳ, z̄) is the centroid of V . Our ball has volume V and centroid
(x̄, ȳ, z̄) = (x0, y0, z0). So

ĳ

S

F ¨ n̂ dS = V[3 + 3x̄´ ȳ] = [3 + 3x0 ´ y0]V

S-10: Let
V =

 

(x, y, z)
ˇ

ˇ x2 + y2 ď 1´ z4, 0 ď z ď 1
(

Then the boundary, BV, of V, with the orientation that is used in the divergence theorem,
consists of two parts

• the surface S, but with the upward pointing normal, and

• the disk D =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 1, z = 0
(

, with normal ´k̂.

So the divergence theorem gives
¡

V

∇∇∇ ¨ F dV =

ĳ

BV

F ¨ n̂ dS = ´
ĳ

S

F ¨ n̂ dS +

ĳ

D

F ¨ (´k̂)dS

As∇∇∇ ¨ F = 0 and F(x, y, 0) =
(
1 , 1 , 1

)

ĳ

S

F ¨ n̂ dS =

ĳ

D

F ¨ (´k̂)dS = ´
ĳ

D

dS = ´π

S-11: Let V be the solid x2 + y2 + 2z2 ď 2, z ě 0. The surface of V consists of the
half-ellipsoid S =

 

(x, y, z)
ˇ

ˇ x2 + y2 + 2z2 = 2, z ě 0
(

, on top with upward pointing
normal, and the disk D = t(x, y, z)u z = 0, x2 + y2 ď 2, on the bottom with normal ´k̂.
Call the vector field F. By the divergence theorem

ĳ

S

F ¨ n̂ dS +

ĳ

D

F ¨ (´k̂)dS =

¡

V

∇∇∇ ¨ F dV =

¡

V

4 dV
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The ellipsoid has a =
?

2, b =
?

2, c = 1 and volume 4
3 πabc = 8

3 π. So

¡

V

4 dV = 4ˆ 1
2(Volume of the ellipsoid) =

16π

3

On D, z = 0 and
ť

D x dS =
ť

D y dS = 0 because x and y are odd. So

ĳ

D

F ¨ (´k̂)dS =

ĳ

D

(xı̂ıı + ŷ + 0k̂) ¨ (´k̂)dS = 0

and the desired flux is
ĳ

S

F ¨ n̂ dS =

¡

V

4 dV =
16
3

π

S-12: (a) If (x, y, z) ‰ 0,

∇∇∇ ¨ F(x, y, z) =
B
Bx

x
[
x2 + y2 + z2

]3/2 +
B
By

y
[
x2 + y2 + z2

]3/2 +
B
Bz

z
[
x2 + y2 + z2

]3/2

=

[
x2 + y2 + z2]´ x 3

2(2x)
[
x2 + y2 + z2

]5/2 +

[
x2 + y2 + z2]´ y 3

2(2y)
[
x2 + y2 + z2

]5/2 +

[
x2 + y2 + z2]´ z 3

2(2z)
[
x2 + y2 + z2

]5/2

=
3
[
x2 + y2 + z2]´ 3x2 ´ 3y2 ´ 3z2

[
x2 + y2 + z2

]5/2 = 0

If (x, y, z) = 0, F(x, y, z) is not defined and hence∇∇∇ ¨ F(x, y, z) is also not defined.

(b) Let a ą 0. Write σa =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 = a2 (. The outward unit normal to σa is
n̂ = r

|r| so that

ż

σa

F ¨ n̂ dS =

ż

|r|=a

r
|r|3 ¨

r
|r| dS =

ż

|r|=a

1
|r|2 dS =

1
a2

ż

|r|=a
dS =

1
a2

(
4πa2)

= 4π ‰ 0

(c) No, the results of (a) and (b) do not contradict the divergence theorem. One
hypothesis of the divergence theorem is that∇∇∇ ¨ F (in fact all first order derivatives of F)
be defined and continuous throughout the solid that∇∇∇ ¨ F is to be integrated over. That
hypothesis is violated in this case.

(d) Let’s first figure out what the surface z2 ´ x2 ´ y2 + 1 = 0, i.e. the surface
x2 + y2 = 1 + z2, looks like. For each z0, the z = z0 cross-section of this surface is the
circle x2 + y2 = 1 + z2

0. The radius of this circle is 1 when z0 = 0 and grows as |z0|
increases. So the solid region E looks like an hourglass drum, as sketched in the figure on
the left below.
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Ea

σa

σ

σ

We are going to use the divergence theorem to compute the flux of F out through the
surface σ of E. However we cannot apply the divergence theorem using E as the solid,
because F is not defined at the origin, (0, 0, 0), which is a point in E. So we pick any
0 ă a ă 1, and define the auxiliary solid

Ea =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 ě a2, x2 + y2 ď 1 + z2, ´1 ď z ď 1
(

The solid Ea is constructed from the solid E by removing the ball x2 + y2 + z2 ď a2 from
it. A side view of Ea is sketched in the figure on the right above. As in part (b), denote by
σa the surface x2 + y2 + z2 = a2 with outward pointing normal. Then the boundary of Ea
is BEa = σ´ σa, meaning that it consists of two parts. One part is the boundary, σ, of E,
with outward pointing normal. The other part is the surface x2 + y2 + z2 = a2, but with
normal pointing into the sphere, opposite to the normals for σa. Consequently the
divergence theorem gives

0 =

¡

Ea

∇∇∇ ¨ F dV =

ĳ

BEa

F ¨ n̂ dS =

ĳ

σ

F ¨ n̂ dS´
ĳ

σa

F ¨ n̂ dS

so that, by part (b)
ĳ

σ

F ¨ n̂ dS =

ĳ

σa

F ¨ n̂ dS = 4π

(e) The equation z2 ´ x2 ´ y2 + 4y´ 3 = 0 can be rewritten as

x2 + (y´ 2)2 = 1 + z2

As is part (d), for each z0, the z = z0 cross-section of this surface is a circle

x2 + (y´ 2)2 = 1 + z2
0 of radius

b

1 + z2
0. But this circle is centred at (0, 2, z0), whereas the

corresponding circle in part (d) was centred at (0, 0, z0). The solid R again has the shape
of an hourglass drum. But while the origin (0, 0, 0) was in E, it is not in

R =
 

(x, y, z)
ˇ

ˇ x2 + (y´ 2)2 ď 1 + z2, ´1 ď z ď 1
(

So∇∇∇ ¨ F = 0 throughout all of R and the divergence theorem gives
ĳ

Σ

F ¨ n̂ dS =

ĳ

BR

F ¨ n̂ dS =

¡

R

∇∇∇ ¨ F dV = 0
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S-13: (a) If the surface were the sphere x2 + y2 + z2 = 1, we could parametrize it using
the spherical coordinates θ and ϕ (with the radial spherical coordinate ρ = 1).

x = sin ϕ cos θ

y = sin ϕ sin θ

z = cos ϕ

with 0 ď θ ă 2π, 0 ď ϕ ď π. Our surface is not a sphere, but the equation looks like the
equation of the sphere with the units of the y- and z-coordinates changed. In particular, if
we define ỹ = y/2 and z̃ = z/2, so that y = 2ỹ and z = 2z̃, then on our surface

1 = x2 +
y2

4
+

z2

4
= x2 +

(2ỹ)2

4
+

(2z̃)2

4
= x2 + ỹ2 + z̃2

and we can parametrize

x = sin ϕ cos θ

ỹ = sin ϕ sin θ

z̃ = cos ϕ

and then

x = sin ϕ cos θ

y = 2ỹ = 2 sin ϕ sin θ

z = 2z̃ = 2 cos ϕ

or

r(θ, ϕ) = sin ϕ cos θ ı̂ıı + 2 sin ϕ sin θ ̂ + 2 cos ϕ k̂ 0 ď θ ă 2π, 0 ď ϕ ď π

(b) Considering part (c) in this question, we are presumably to evaluate the flux integral
directly. Since

(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
=
(´ sin ϕ sin θ , 2 sin ϕ cos θ , 0

)

( Bx
Bϕ

,
By
Bϕ

,
Bz
Bϕ

)
= (cos ϕ cos θ , 2 cos ϕ sin θ , ´2 sin ϕ)

(3.3.1) in the CLP-4 text yields

n̂ dS = ˘
(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
ˆ
( Bx
Bϕ

,
By
Bϕ

,
Bz
Bϕ

)
dθdϕ

= ˘(´ sin ϕ sin θ , 2 sin ϕ cos θ , 0
)ˆ (cos ϕ cos θ , 2 cos ϕ sin θ , ´2 sin ϕ) dθdϕ

= ˘(´ 4 sin2 ϕ cos θ , ´2 sin2 ϕ sin θ , ´2 sin ϕ cos ϕ
)

dθdϕ

= ¯2 sin ϕ
(
2 sin ϕ cos θ , sin ϕ sin θ , cos ϕ

)
dθdϕ

To get an outward pointing normal we need the + sign. For example, with the + sign,
the z-component is 2 sin ϕ cos ϕ = sin(2ϕ) so that the normal is pointing upward when
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0 ă ϕ ă π
2 , i.e. in the northern hemisphere, and is pointing downward when π

2 ă ϕ ă π,
i.e. in the southern hemisphere. So

F ¨ n̂dS =
 

(sin ϕ cos θ)(4 sin2 ϕ cos θ) + (2 sin ϕ sin θ)(2 sin2 ϕ sin θ)

+ (2 cos ϕ)(2 sin ϕ cos ϕ)
(

dθdϕ

=
 

4 sin3 ϕ cos2 θ + 4 sin3 ϕ sin2 θ + 4 sin ϕ cos2 ϕ
(

dθdϕ

= 4 sin ϕ
(

sin2 ϕ + cos2 ϕ
)
dθdϕ

= 4 sin ϕ dθdϕ

and the flux is
ĳ

S

F ¨ n̂ dS =

ż π

0
dϕ

ż 2π

0
dθ 4 sin ϕ = 8π

ż π

0
dϕ sin ϕ = 16π

(c) Set
V =

 

(x, y, z)
ˇ

ˇ x2 + y2

4 + z2

4 ď 1
(

Since∇∇∇ ¨ F = 3, the divergence theorem gives
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV = 3Volume(V)

The volume contained in the ellipsoid, x2

a2 +
y2

b2 +
z2

c2 = 1, of semiaxes a, b and c is 4
3 πabc.

In our case a = 1, b = c = 2, so
ĳ

S

F ¨ n̂ dS = 3Volume(V) = 3ˆ 4
3

π(1)(2)(2) = 16π

which is exactly what we found in part (b).

The volume of the ellipsoid V can also be found by observing that, in V,

• x runs from ´1 to 1 and
• for each fixed ´1 ď x ď 1, (y, z) runs over the disk y2 + z2 ď 4(1´ x2), which has

area 4π(1´ x2).

That is
V =

 

(x, y, z)
ˇ

ˇ ´ 1 ď x ď 1, y2 + z2 ď 4(1´ x2)
(

so that

Volume(V) =

ż 1

´1
dx

ĳ

y2+z2ď4(1´x2)

dy dz

=

ż 1

´1
dx 4π(1´ x2) = 2ˆ 4π

ż 1

0
dx (1´ x2) = 8π

[
1´ 1

3

]

=
16π

3
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S-14: Set
V =

 

(x, y, z)
ˇ

ˇ x2 + y2 ď 2, 0 ď z ď 2x + 3
(

Let’s try the divergence theorem. Since

∇∇∇ ¨ F =
B
Bx
(
x3 + cos(y2)

)
+
B
By
(
y3 + zex)+ B

Bz
(
z2 + arctan(xy)

)

= 3x2 + 3y2 + 2z

the divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV

=

ż

x2+y2ď2
dxdy

ż 2x+3

0
dz
(
3x2 + 3y2 + 2z

)

=

ż

x2+y2ď2
dxdy

 

3(x2 + y2)(2x + 3) + (2x + 3)2(

=

ż

x2+y2ď2
dxdy

 

9 + 12x + 13x2 + 9y2 + 6x3 + 6xy2(

= 9(2π) +

ż

x2+y2ď2
dxdy

 

13x2 + 9y2(

because 12x, 6x3 and 6xy2 are all odd under x Ñ ´x. To evaluate the final remaining
integral, let’s switch to polar coordinates.

ĳ

x2+y2ď2

 

13x2 + 9y2(dxdy =

ż

?
2

0
dr r

ż 2π

0
dθ

 

13
(
r cos θ)2 + 9

(
r sin θ)2(

=

ż

?
2

0
dr r3

ż 2π

0
dθ

 

13 cos2 θ + 9 sin2 θ
(

Since
ż 2π

0
cos2 θ dθ =

ż 2π

0

cos(2θ) + 1
2

dθ =

[
sin(2θ)

4
+

θ

2

]2π

0
= π

ż 2π

0
sin2 θ dθ =

ż 2π

0

1´ cos(2θ)

2
dθ =

[
θ

2
´ sin(2θ)

4

]2π

0
= π

we finally have
ĳ

S

F ¨ n̂ dS = 18π +
(
?

2)4

4
π
 

13 + 9
(

= (18 + 22)π = 40π

For an efficient, sneaky, way to evaluate
ş2π

0 cos2 θ dθ and
ş2π

0 sin2 θ dθ, see Example 2.4.4
in the CLP-4 text.
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S-15: Solution 1 (divergence theorem): Set F = (x + y, x + z, y + z). Then∇∇∇ ¨ F = 2. That’s
really simple. So let’s try using the divergence theorem.

˝ Set S =
 

(x, y, z)
ˇ

ˇ x2 + z2 = 4, 0 ď y ď 3
(

. We are to compute
ť

S F ¨ n̂ dS, with n̂
denoting the outward normal to S. S is not the boundary of a solid, so we cannot
compute

ť

S F ¨ n̂ dS by applying the divergence theorem directly. The figure on the
left below shows the part of S that is in the first octant.

z y = 3

y

x

x2 + z2 = 4

S
z y = 3

y

x

x2 + z2 = 4

S

̂−̂
V

Dr

Dl

˝ On the other hand S, is “almost” the boundary of

V =
 

(x, y, z)
ˇ

ˇ x2 + z2 ď 4, 0 ď y ď 3
(

The boundary, BV of V consists of three pieces — S and the two disks

Dl =
 

(x, y, z)
ˇ

ˇ x2 + z2 ď 4, y = 0
(

Dr =
 

(x, y, z)
ˇ

ˇ x2 + z2 ď 4, y = 3
(

The figure on the right above shows the parts of S, V, Dl and Dr that are in the first
octant.

The outward normal to Dr is ̂ and the outward normal to Dl is ´̂, to the divergence
theorem gives

¡

V

∇∇∇ ¨ F dV =

ĳ

BV

F ¨ n̂ dS

=

ĳ

S

F ¨ n̂ dS +

ĳ

Dr

F ¨ ̂ dS +

ĳ

Dl

F ¨ (´̂)dS

Since∇∇∇ ¨ F = 2 and F ¨ ̂ = x + z,
ĳ

S

F ¨ n̂ dS =

¡

V

2 dV ´
ĳ

x2+z2ď4

(x + z)dxdz´
ĳ

x2+z2ď4

(´x´ z)dxdz

=

¡

V

2 dV

= 2 volume(V) = 2(π22)3 = 24π

Solution 2 (direct evaluation): Let’s parametrize the surface by

r(θ, y) = 2 cos θ ı̂ıı + y ̂ + 2 sin θ k̂ 0 ď θ ă 2π, 0 ď y ď 3
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Then

Br
Bθ =

(´ 2 sin θ , 0 , 2 cos θ
)

Br
By =

(
0 , 1 , 0

)

n̂dS = ˘ Br
Bθ ˆ Br

Bydθdy = ˘(´ 2 cos θ , 0 , ´2 sin θ
)
dθdy

To get the outward normal, we want the minus sign. So

n̂dS =
(
2 cos θ , 0 , 2 sin θ

)
dθdy

and, since
F
(
r(θ, y)

)
=
(
2 cos θ + y , 2 cos θ + 2 sin θ , y + 2 sin θ

)

the specified flux is
ĳ

S

F ¨ n̂ dS =

ż 2π

0
dθ

ż 3

0
dy
(
2 cos θ + y , 2 cos θ + 2 sin θ , y + 2 sin θ

) ¨ (2 cos θ , 0 , 2 sin θ
)

=

ż 2π

0
dθ

ż 3

0
dy
(
4 cos2 θ + 2y cos θ + 2y sin θ + 4 sin2 θ

)

=

ż 2π

0
dθ

ż 3

0
dy
(
4 + 2y cos θ + 2y sin θ

)

Since
ş2π

0 dθ cos θ =
ş2π

0 dθ sin θ = 0,
ĳ

S

F ¨ n̂ dS = 4
ż 2π

0
dθ

ż 3

0
dy = 4(2π)3 = 24π

S-16: The question highlights that the vector field has divergence 0. That strongly
suggests that we use the divergence theorem. Set

V =
 

(x, y, z)
ˇ

ˇ 0 ď z ď 1´ (x2 + y2)2 (
V S

D

n̂

n̂
Then the boundary, BV, of V consists of two parts, namely S (with normal pointing
upwards) and the disk

D =
 

(x, y, 0)
ˇ

ˇ x2 + y2 ď 1
(

(with normal pointing downwards). The divergence theorem (Theorem 4.2.2 of the
CLP-4 text) gives

ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

D

F ¨ (´k̂)dS

=

ĳ

D

(x2 + y2)dxdy
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Switching to polar coordinates, the flux is
ĳ

S

F ¨ n̂ dS =

ż 1

0
dr r

ż 2π

0
dθ r2 = 2π

ż 1

0
dr r3 = 2π 1

4 = π
2

S-17: As F looks complicated, we will probably want to avoid evaluating the flux integral
directly. Let’s first compute the divergence of F, to see if it looks wise to use the
divergence theorem instead.

∇∇∇ ¨ F =
B
Bx
(

tan
?

z + sin(y3)
)
+
B
By
(
e´x2)

+
B
Bz
(
z
)
= 1

Looks good! We cannot yet apply the divergence theorem, since S is not the boundary of
a solid region V. To help us choose a solid V whose boundary at least includes S, here is
a sketch. S is the top of the “ice cream cone”

z =
√

x2 + y2

z = 2− x2 − y2

D

S

Note that the the paraboloid z = 2´ x2 ´ y2 and the cone z =
a

x2 + y2 intersect along
the circle x2 + y2 = 1, z = 1. Probably the simplest solid whose boundary includes S is

V =
 

(x, y, z)
ˇ

ˇ 1 ď z ď 2´ x2 ´ y2, x2 + y2 ď 1
(

The boundary BV of V consists of S (with upward pointing normal) and the disk

D =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 1, z = 1
(

with normal ´k̂. So the divergence theorem gives
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

D

F ¨ (´k̂)dS

=

¡

V

∇∇∇¨F
hkkikkj

1 dV +

ĳ

D

F¨k̂=z
hkkikkj

1 dS

As D is a disk of radius 1,
ť

D dS = π. To compute the volume of V, we’ll slice it into a
stack of horizontal “pancakes”. Since z = 2´ x2 ´ y2 is equivalent to

a

x2 + y2 =
?

2´ z,
the pancake at height z is a circular disk of radius

?
2´ z and hence of cross-sectional

area π(2´ z). So the volume of V is
¡

V

dV =

ż 2

1
π(2´ z) dz = ´π

2
(2´ z)2

ˇ

ˇ

ˇ

2

1
=

π

2
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and the flux

ĳ

S

F ¨ n̂ dS =
π

2
+ π =

3
2

π

S-18: As F looks complicated, we will probably want to avoid evaluating the flux integral
directly. Let’s first compute the divergence of F, to see if it looks wise to use the
divergence theorem instead.

∇∇∇ ¨ F =
B
Bx
(

cos z + xy2)+ B
By
(
xe´z)+ B

Bz
(

sin y + x2z
)
= y2 + x2

Looks promising. Furthermore S is the boundary of the solid region

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď z ď 4
(

z

y

x

z = x2 + y2

z = 4

So the divergence theorem gives

ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV =

¡

V

(x2 + y2) dV

To compute the triple integral, we’ll use the cylindrical coordinates (r, θ, z). The
z-coordinate runs from 0 to 4. For each fixed 0 ď z ď 4 (see the blue disk in the figure
below — which shows the part of V in the first octant), (x, y) runs over 0 ď x2 + y2 ď z,

z

y

x

z = x2 + y2 = r2

z = 4

which in cylindrical coordinates is 0 ď r2 ď z or 0 ď r ď ?z. So the flux and the triple
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integral are
ĳ

S

F ¨ n̂ dS =

¡

V

(x2 + y2) dV

=

ż 4

0
dz

ż

?
z

0
dr r

ż 2π

0
dθ r2

= 2π

ż 4

0
dz

ż

?
z

0
dr r3

= 2π

ż 4

0
dz

z2

4
= 2π

43

3ˆ 4

=
32
3

π

S-19: If we were to evaluate this integral directly using, for example, spherical
coordinates, our integrand would contain

tan(x) = tan
(
2 sin ϕ cos θ

)

That’s not very friendly looking. So let’s consider using the divergence theorem instead.
To start,

∇∇∇ ¨ F =
B
Bx
(
ey + xz

)
+
B
By
(
zy + tan(x)

)
+
B
Bz
(
z2 ´ 1

)
= 4z

That’s nice and simple. So let’s move on to consideration of S. The part of S in the first
octant is outlined in red in the figure on the left below.

z

y

x

S z = 0

z = 1

z

y

x

S

Db

Dt

V

The surface S is not closed, and so is not the boundary of a solid, so we cannot apply the
divergence theorem directly. But we can easily come up with a solid whose boundary
contains S. Let

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 ď 4, 0 ď z ď 1
(

The boundary BV of V consists of three parts — S, the bottom disk

Db =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 4, z = 0
(
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and the top disk

Dt =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 3, z = 1
(

The outward normal to Dt is k̂ and the outward normal to Db is ´k̂. So the divergence
theorem gives

¡

V

∇∇∇ ¨ F dV =

ĳ

BV

F ¨ n̂ dS =

ĳ

S

F ¨ n̂ dS +

ĳ

Dt

F ¨ k̂ dS +

ĳ

Db

F ¨ (´k̂)dS

On Db, z = 0 so that F ¨ (´k̂) = ´(02 ´ 1) = 1 and on Dt, z = 1 so that F ¨ k̂ = 12 ´ 1 = 0.
So

ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇¨F
hkkikkj

4z dV ´
ĳ

Db

dS

The constant z cross-section of V is a disk of radius
?

4´ z2 and hence of area π(4´ z2)
and Db is a disk of radius 2 and hence of area 4π. So

ĳ

S

F ¨ n̂ dS =

ż 1

0
(4z) π(4´ z2) dz´ 4π = 4π

[
2z2 ´ z4

4

]1

0
´ 4π = 3π

S-20: The divergence of F, namely,

∇∇∇ ¨ F =
B
Bx
(
x2z + cos πy

)
+
B
By
(
yz + sin πz

)
+
B
Bz
(
x´ y2)

= 2xz + z

is a lot simpler than F itself. So let’s use the divergence theorem (Theorem 4.2.2 of the
CLP-4 text).

ĳ

S

F ¨ n̂ dS =

¡

B

∇∇∇ ¨ F dV =

¡

B

(2xz + z)dV

As B is invariant under x Ñ ´x while 2xz is odd under x Ñ ´x, the integral
ţ

B 2xz dV
is zero. To help set up the limits of integration for

ţ

B z dV, note that, in B,

˝ (x, y) runs over the rectangle ´1 ď x ď 1, 0 ď y ď 2 and
˝ for each fixed (x, y), z runs over 0 ď z ď 3´ y.
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So
ĳ

S

F ¨ n̂ dS =

ż 1

´1
dx

ż 2

0
dy

ż 3´y

0
dz z

=
1
2

ż 1

´1
dx

ż 2

0
dy (3´ y)2

= ´1
2

ż 1

´1
dx

ż 1

3
du u2 with u = 3´ y, du = ´dy

= ´1
2

ż 1

´1
dx
[13

3
´ 33

3

]1

´1

=
26
3

S-21: The vector field F looks very complicated. That strongly suggests that we not
evaluate the integral directly. So let’s start by computing

∇∇∇ ¨ F =
B
Bx
(
x + cos(z2)

)
+
B
By

(
y + ln(x2 + z5)

)
+
B
Bz
(b

x2 + y2
)

= 2

That’s really simple, which suggest that we use the divergence theorem. But the surface
S is not closed, and so is not the boundary of a solid. So we cannot apply the divergence
theorem directly. But we can easily come up with a solid whose boundary contains S. Let

V =
 

(x, y, z)
ˇ

ˇ 0 ď z ď
b

1´ x2 ´ y2, x2 + y2 ď 1
(

V S

D

n̂

n̂
Then the boundary, BV, of V consists of two parts, namely S (with normal pointing
upwards) and the disk

D =
 

(x, y, 0)
ˇ

ˇ x2 + y2 ď 1
(

(with normal ´k̂). The divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

D

F ¨ (´k̂)dS

=

¡

V

2 dV +

ĳ

D

b

x2 + y2 dxdy = 2
1
2

4
3

π13 +

ĳ

D

b

x2 + y2 dxdy

Switching to polar coordinates, the flux is
ĳ

S

F ¨ n̂ dS =
4
3

π +

ż 1

0
dr r

ż 2π

0
dθ r =

4
3

π + 2π

ż 1

0
dr r2 =

4
3

π + 2π
1
3
= 2π
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S-22: (a) By the divergence theorem (Theorem 4.2.2 of the CLP-4 text), the outward flux
of F through the boundary of E is

ĳ

BE

F ¨ n̂ dS =

¡

E

∇∇∇ ¨ F dV

=

¡

E

(´ x2 ´ y2 + 4
)

dV

To evaluate this integral we switch to cylindrical coordinates. In cylindrical coordinates

E =
 

(r cos θ , r sin θ , z)
ˇ

ˇ 0 ď z ď 4, r2 ď z
(

So
ĳ

BE

F ¨ n̂ dS =

ż 4

0
dz

ż

?
z

0
dr r

ż 2π

0
dθ
(´ r2 + 4

)

= 2π

ż 4

0
dz

ż

?
z

0
dr
(
4r´ r3)

= 2π

ż 4

0
dz
(

2z´ z2

4

)

= 2π
[
z2 ´ z3

12

]4

0
= 2π

[
16´ 16

3

]
=

64
3

π

(b) The boundary of S consists of two parts — S, but with downward pointing normal,
on the bottom and the disk

D =
 

(x, y, z)
ˇ

ˇ z = 4, x2 + y2 ď 4
(

with normal k̂, on top.

z

y

x

z = x2 + y2

z = 4
k̂

n̂S

D

So, by part (a),

64
3

π =

ĳ

BE

F ¨ n̂ dS = ´
ĳ

S

F ¨ n̂ dS +

ĳ

D

F ¨ k̂ dS = ´
ĳ

S

F ¨ n̂ dS +

ĳ

D

F¨k̂
hkkikkj

4z dS
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Since z = 4 on D, and D is a disk of radius 2,
ĳ

S

F ¨ n̂ dS = ´64
3

π + 16
ĳ

D

dS = ´64
3

π + 16(4π) =
128
3

π

S-23: (a) Since

B
Bx

x

[x2 + y2 + z2]3/2 =
1

[x2 + y2 + z2]3/2 ´
3
2

x(2x)

[x2 + y2 + z2]5/2 =
´2x2 + y2 + z2

[x2 + y2 + z2]5/2

B
By

y

[x2 + y2 + z2]3/2 =
1

[x2 + y2 + z2]3/2 ´
3
2

y(2y)

[x2 + y2 + z2]5/2 =
x2 ´ 2y2 + z2

[x2 + y2 + z2]5/2

B
Bz

z

[x2 + y2 + z2]3/2 =
1

[x2 + y2 + z2]3/2 ´
3
2

z(2z)

[x2 + y2 + z2]5/2 =
x2 + y2 ´ 2z2

[x2 + y2 + z2]5/2

the specified divergence is

∇∇∇ ¨ F =
(´2x2 + y2 + z2) + (x2 ´ 2y2 + z2) + (x2 + y2 ´ 2z2)

[x2 + y2 + z2]5/2 = 0

if (x, y, z) ‰ 0 and is not defined if (x, y, z) = 0.

(b), (c) Set

V1 =
 

(x, y, z)
ˇ

ˇ x2 + (y´ 2)2 + z2 ď 9
(

V2 =
 

(x, y, z)
ˇ

ˇ x2 + (y´ 2)2 + z2 ď 1
(

Here are side views of both V1 and V2. Both V1 and V2 are spherical balls centred on

y

z

V1

S1

(0, 2, 0)
y

z

V2

S2

(0, 2, 0). The difference between them is that V1 has radius 3 while V2 has radius 1. In
particular (0, 0, 0) is not in V2. So∇∇∇ ¨ F is well-defined and zero throughout V2 and, by
the divergence theorem (Theorem 4.2.2 of the CLP-4 text),

ĳ

S2

F ¨ n̂ dS =

¡

V2

∇∇∇ ¨ F dV = 0

On the other hand, (0, 0, 0) is in V1. We cannot blindly apply the divergence theorem to
V1 —∇∇∇ ¨ F(x, y, z) is not defined at the point (x, y, z) = (0, 0, 0) in V1. We can work
around this obstruction by
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˝ choosing a number ρ ą 0 that is small enough that the sphere

Sρ =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 = ρ2 (

is completely contained inside V1 (for example, ρ = 1
2 is fine)

˝ and then removing the interior of Sρ from V1.

This produces

V3 =
 

(x, y)
ˇ

ˇ x2 + (y´ 2)2 + z2 ď 9, x2 + y2 + z2 ě ρ2 (

whose side view is sketched below.

y

z

V3

S1

Sρ (0, 2, 0)

The boundary of V3 consists of two parts

˝ the sphere S1, with outward normal and
˝ the sphere Sρ with inward normal n̂ = ´ r

|r|

The divergence∇∇∇ ¨ F is well-defined and zero throughout V3 so that, by the divergence
theorem,

0 =

¡

V3

∇∇∇ ¨ F dV =

ĳ

S1

F ¨ n̂ dS +

ĳ

Sρ

F ¨
(
´ r
|r|
)

dS

So
ĳ

S1

F ¨ n̂ dS =

ĳ

Sρ

F ¨
( r
|r|
)

dS =

ĳ

Sρ

( r
|r|3
)
¨
( r
|r|
)

dS =

ĳ

Sρ

1
|r|2 dS =

ĳ

Sρ

1
ρ2 dS

=
1
ρ2 4πρ2 = 4π

since Sρ is a sphere of radius ρ and hence of surface area 4πρ2.

(d) The flux integrals
ť

S1
F ¨ n̂ dS and

ť

S2
F ¨ n̂ dS are different, because the one point,

(0, 0, 0), where∇∇∇ ¨ F fails to be well-defined and zero, is contained inside S1 but is not
contained inside S2.
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S-24: The vector field F looks pretty complicated. But its divergence

∇∇∇ ¨ F = 2 + 3 + 1 = 6

is very simple. So let’s use the divergence theorem (Theorem 4.2.9 of the CLP-4 text). It
says

ĳ

S

F ¨ n̂ dS =

¡

E

∇∇∇ ¨ F dV =

¡

E

6 dV = 6 Volume(E)

For any fixed 0 ď X ď 2, the cross-section of E with x = X has side view

y

z z = 2 + y

y = 2
E

That cross-section has area 2ˆ 2+4
2 = 6. Consequently the volume of E is 2ˆ 6 = 12 and
ĳ

S

F ¨ n̂ dS = 6ˆ 12 = 72

S-25: (a) The divergence is

∇∇∇ ¨ F =
B
Bx
(
z arctan(y2)

)
+
B
By
(
z3 ln(x2 + 1)

)
+
B
Bz
(
3z
)
= 3

(b) The complexity of F and the simplicity of∇∇∇ ¨ F strongly suggest that we use the
divergence theorem to evaluate

ť

S F ¨ n̂ dS. However, S is not a closed surface and is not
the boundary of a solid. The figure on the left below is a sketch of the part of S in the first
octant.

x

y

z

n̂
S

(0,0,2)

x

y

z
n̂

n̂
∂V

D

∂V
V

(0,0,2)

On the other hand S is part of the surface of the solid

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 ď 4, z ě 1
(

which is sketched on the right above. The boundary of V consists of two parts:
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˝ the original surface S, but with upward, rather than downward, normal and
˝ the disk D =

 

(x, y, z)
ˇ

ˇ x2 + y2 ď 3, z = 1
(

with normal ´k̂.

So the divergence theorem (Theorem 4.2.9 in the CLP-4 text) gives
ĳ

BV

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV = 3
¡

V

dV

ùñ ´
ĳ

S

F ¨ n̂ dS +

ĳ

D

F ¨ (´k̂)dS = 3 Volume(V)

Thus

ĳ

S

F ¨ n̂ dS = ´3 Volume(V) +

ĳ

D

´F¨k̂
hkkikkj

´3 dS

= ´3 Volume(V)´ 3 Area(D)

= ´3 Volume(V)´ 9π

since D is a circular disk of radius
?

3. To compute the volume of V, we slice V into thin
horizontal pancakes each of thinkness dz. The pancake at height z has cross-section the
circular disk x2 + y2 ď 4´ z2. As this disk has area π(4´ z2), the pancake has volume
π(4´ z2)dz. All together

Volume(V) =

ż 2

1
dz π(4´ z2) = π

[
4z´ z3

3

]2

1
= π

[
4´ 7

3

]
=

5π

3

and
ĳ

S

F ¨ n̂ dS = ´3
5π

3
´ 9π = ´14π

S-26: Let’s try the divergence theorem. Set

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 ď 3
(

Then the boundary of V is S, but with outward pointing normal. Since

∇∇∇ ¨ F =
B
Bx
(
xy2 + y4z6)+ B

By
(
yz2 + x4z

)
+
B
Bz
(
zx2 + xy4) = y2 + z2 + x2

and because S is oriented inward, the divergence theorem (Theorem 4.2.2 of the CLP-4
text) gives

ĳ

S

F ¨ n̂ dS = ´
¡

V

∇∇∇ ¨ F dV = ´
¡

V

(x2 + y2 + z2)dV
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Switching to spherical coordinates (see Appendix F.3 in the CLP-4 text)

ĳ

S

F ¨ n̂ dS = ´
ż

?
3

0
dρ

ż π

0
dϕ

ż 2π

0
dθ ρ4 sin ϕ

= ´2π

[
ż

?
3

0
dρ ρ4

] [
ż π

0
dϕ sin ϕ

]

= ´2π

[
ρ5

5

]?3

0

[
´ cos ϕ

]π

0

= ´36
?

3
5

π

S-27: (a) The divergence of F is

∇ ¨ F =
B
Bx
(´ 2xy

)
+
B
By
(
y2 + sin(xz)

)
+
B
Bz
(
x2 + y2) = ´2y + 2y + 0 = 0

(b) Call the specified surface S and set

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 + (z´ 12)2 ď 132, z ě 0
(

The boundary, BV, of V consists of two parts — S, with outward normal, and the disk

D =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 132 ´ 122 = 52, z = 0
(

with normal ´k̂. By the divergence theorem, the desired flux is
ĳ

S

F ¨ n̂ ds =
¡

V

∇ ¨ F dV ´
ĳ

D

F ¨ (´k̂) dS

=

¡

V

0 dV +

ĳ

D

(x2 + y2)dxdy

= 0 +
ż 5

0
dr r

ż 2π

0
dθ r2

= 2π
54

4
=

625
2

π

S-28: The boundary of the solid V enclosed by S and z = ˘1 consists of three pieces: S,
the top disk

S1 =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 2, z = 1
(

and the bottom disk
S2 =

 

(x, y, z)
ˇ

ˇ x2 + y2 ď 2, z = ´1
(
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On S1, n̂ = k̂ and

F ¨ n̂ = F ¨ k̂ = xy´ z´ z2
ˇ

ˇ

ˇ

z=1
= xy´ 2

so that, denoting D =
 

(x, y)
ˇ

ˇ x2 + y2 ď 2
(

,

ĳ

S1

F ¨ n̂ dS =

ĳ

D

(xy´ 2)dxdy = ´2 Area(D) = ´4π

Here we have used that the integral
ť

D xy dxdy = 0 because xy is odd under x Ñ ´x.
On S2, n̂ = ´k̂ and

F ¨ n̂ = ´F ¨ k̂ = ´(xy´ z´ z2)
ˇ

ˇ

ˇ

z=´1
= ´xy

so that
ĳ

S2

F ¨ n̂ dS =

ĳ

D

(´xy)dxdy = 0

By the divergence theorem (Theorem 4.2.2 in the CLP-4 text),
ĳ

S

F ¨ n̂dS =

ĳ

V

∇∇∇ ¨ F dV ´
ĳ

S1

F ¨ n̂ dS´
ĳ

S2

F ¨ n̂ dS = 0´ (´4π)´ 0 = 4π

since

∇∇∇ ¨ F =
B
Bx

(x + eyz) +
B
By
(
2yz + sin(xz)

)
+
B
Bz

(xy´ z´ z2)

= 1 + 2z´ 1´ 2z
= 0

S-29: Direct Solution. The surface is given by the implicit equation f (x, y, z) = 0 with
f (x, y, z) = x2 + y2 + 2z2 ´ 1. Hence, by (3.3.3) in the CLP-4 text,

n̂ dS =
∇∇∇ f
∇∇∇ f ¨ k̂dxdy =

2xı̂ıı + 2ŷ + 4zk̂
4z

dxdy

This n̂ has positive k̂ component. Assume that it is the desired n̂, though this was not
specified in the question. Since

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x2 ´ y´ 1 ecos y + z3 2xz + z5




= ´3z2 ı̂ıı´ 2z ̂ + k̂
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we have
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

x2+y2ď1

(´ 3z(x, y)2 ı̂ıı´ 2z(x, y) ̂ + k̂
) ¨ 2x ı̂ıı + 2y ̂ + 4z(x, y) k̂

4z(x, y)
dxdy

=

ĳ

x2+y2ď1

(
´ 3

2
x z(x, y)´ y + 1

)
dxdy

Since y is an odd function of y and x z(x, y) = x
b

1
2(1´ x2 ´ y2) is an odd function of x,

they both integrate to zero. Hence
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

x2+y2ď1

1 dxdy = π

Tricky Solution. Let V be the solid x2 + y2 + 2z2 ď 1, z ě 0. The surface of V consists of S
with upward pointing normal and the disk D =

 

(x, y, z)
ˇ

ˇ z = 0, x2 + y2 ď 1
(

with
normal ´k̂. By the divergence theorem, Theorem 4.2.2 in the CLP-4 text,

ĳ

S

∇∇∇ˆ F ¨ n̂ dS +

ĳ

D

∇∇∇ˆ F ¨ (´k̂)dS =

¡

V

∇∇∇ ¨∇∇∇ˆ F dV =

¡

V

0 dV = 0

Hence
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

D

∇∇∇ˆ F ¨ k̂ dS =

ĳ

D

dS = π

S-30: Let S1 be the disk x2 + y2 ď 3, z = 0 (with n̂ the downward pointing normal) and
let V be the portion of the ball x2 + y2 + (z´ 1)2 ď 4 with z ě 0. Then, by the divergence
theorem,

ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

S1

F ¨ (´k̂)dS

=

¡

V

(2x + 2y)dV +

ĳ

S1

(4 + 5x)dxdy

Because x is odd under x Ñ ´x and y is odd under y Ñ ´y,
¡

V

x dV =

¡

V

y dV =

ĳ

S1

x dxdy = 0

so that
ĳ

S

F ¨ n̂ dS = 4
ĳ

S1

dxdy = 4 Area(S1) = 4ˆ π
(?

3
)2

= 12π
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S-31: Call the hemisphere 0 ď z ďa

4´ x2 ´ y2, H. Call the bottom surface of the
hemisphere D and the top surface S. The disk D has radius 2, area 4π, z = 0 and the
outward normal ´k̂, so that

ĳ

D

F ¨ n̂ dS = ´
ĳ

D

F ¨ k̂ dxdy = ´
ĳ

D

dxdy = ´4π

As
∇∇∇ ¨ F =

B
Bx

(xy2) +
B
By

(x2y) +
B
Bz

(1) = x2 + y2

the divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives
ĳ

S

F ¨ n̂ dS =

¡

H

∇∇∇ ¨ F dV ´
ĳ

D

F ¨ n̂ dS =

¡

R

(x2 + y2) dV ´ (´4π)

To evaluate the remaining integral, let’s switch to the cylindrical coordinates (r, θ, z). In
cylindrical coordinates, the equation x2 + y2 + z2 = 4 becomes r2 + z2 = 4. So

ĳ

S

F ¨ n̂ dS = 4π +

ż 2

0
dz

ż

?
4´z2

0
dr r

ż 2π

0
dθ r2 = 4π + 2π

ż 2

0
dz

1
4
(a

4´ z2
)4

= 4π +
π

2

ż 2

0
dz (16´ 8z2 + z4) = 4π +

π

2

[
16z´ 8

3
z3 +

1
5

z5
]2

0

=
188
15

π « 39.37

S-32: Let St, Sb and Sc denote the top, bottom and curved surfaces of D respectively. On
the top surface, z = 5 and the outward normal to D is k̂, so that

ĳ

St

F ¨ n̂ dS =

ĳ

x2+y2ď1

(15´ 5ye5)dxdy = 15
ĳ

x2+y2ď1

dxdy = 15π

The integral over y was zero because y is odd under y Ñ ´y. On the bottom surface,
z = 0 and the outward normal to D is ´k̂, so that

ĳ

Sb

F ¨ n̂ dS = ´
ĳ

x2+y2ď1

(3ˆ 0´ 0ˆ ye0)dxdy = 0

Again, the integral over y was zero because y is odd under y Ñ ´y. As

∇∇∇ ¨F =
B
Bx

(x+ xyez)+ 1
2
B
By
(
y2zez)+ B

Bz
(3z´ yzez) = (1+ yez)+ yzez +(3´ yzez´ yez) = 4

the divergence theorem gives
ĳ

Sc

F ¨ n̂ dS =

¡

D

∇∇∇ ¨ F dV ´
ĳ

St

F ¨ n̂ dS´
ĳ

Sb

F ¨ n̂ dS

=

¡

D

4 dV ´ 15π ´ 0 = 4ˆ π12 ˆ 5´ 15π = 5π
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S-33: Let V =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 ď a2, x ě 0, y ě 0, z ě 0
(

.

z

y

x

x2 + y2 + z2 = a2

Then BV consists of

• the x = 0 face
 

(x, y, z)
ˇ

ˇ y2 + z2 ď a2, x = 0, y ě 0, z ě 0
(

with normal n̂ = ´ı̂ıı,
• the y = 0 face

 

(x, y, z)
ˇ

ˇ x2 + z2 ď a2, x ě 0, y = 0, z ě 0
(

with normal n̂ = ´̂,
• the z = 0 face

 

(x, y, z)
ˇ

ˇ x2 + y2 ď a2, x ě 0, y ě 0, z = 0
(

with normal n̂ = ´k̂,
• and the first octant part of the sphere. Call it S.

Then

¡

V

∇∇∇ ¨ F dV =

¡

V

[
z + 1 + z´ 2z

]
dV =

¡

V

dV =
1
8

4
3

πa3 =
1
6

πa3

ĳ

z=0
face

F ¨ (´k̂)dx dy =

ĳ

z=0
face

(2x + 02)dx dy = 2
ż a

0
dr r

ż π/2

0
dθ r cos θ = 2

ż a

0
r2 dr =

2a3

3

ĳ

y=0
face

F ¨ (´̂)dx dz = ´
ĳ

y=0
face

(0 + 0z)dx dz = 0

ĳ

x=0
face

F ¨ (´ı̂ıı)dy dz =

ĳ

x=0
face

´(y + 0z)dy dz = ´
ż a

0
dr r

ż π/2

0
dθ r sin θ = ´

ż a

0
r2 dr = ´a3

3

By the divergence theorem

ĳ

S

F ¨ n̂ dx dy =

¡

V

∇∇∇ ¨ F dV ´
ĳ

x=0
face

F ¨ (´ı̂ıı)dy dz´
ĳ

y=0
face

F ¨ (´̂)dx dz´
ĳ

z=0
face

F ¨ (´k̂)dx dy

=

[
π

6
´ 1

3

]
a3

S-34: (a) On the cylindrical surface S1, use (surprise!) cylindrical coordinates. Since the
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cylinder has radius
?

2, we may parametrize it by

r(θ, z) =
?

2 cos θ ı̂ıı +
?

2 sin θ ̂ + z k̂
Br
Bθ

(θ, z) = ´
?

2 sin θ ı̂ıı +
?

2 cos θ ̂

Br
Bz

(θ, z) = k̂

n̂ dS = ˘Br
Bθ

(θ, z)ˆ Br
Bz

(θ, z) dθ dz

= ˘det




ı̂ıı ̂ k̂
´?2 sin θ ı̂ıı

?
2 cos θ 0

0 0 1


 dθ dz

= ˘(
?

2 cos θ ı̂ıı +
?

2 sin θ ̂
)

dθ dz

To get the inward pointing normal, choose the minus sign. So

F ¨ n̂ dS =
[?

2
(

cos θ ´ z sin θ
)
ı̂ıı +

?
2
(

sin θ + z cos θ
)
̂ + (¨ ¨ ¨ )k̂] ¨ [´

?
2 cos θ ı̂ıı´

?
2 sin θ ̂

]
dθ dz

= ´2
[(

cos θ ´ z sin θ
)

cos θ +
(

sin θ + z cos θ
)

sin θ
]

dθ dz
= ´2 dθ dz

On the intersection of the sphere and cylinder

z2 = 4´ x2 ´ y2 = 4´ 2 = 2

so z runs from ´?2 to
?

2 (see the figure below) and

ĳ

S1

F ¨ n̂ dS = ´2
ż

?
2

´
?

2
dz

ż 2π

0
dθ = ´8

?
2π

(b) Observe that∇∇∇ ¨ F = 3. So

¡

V

∇∇∇ ¨ F dV =

¡

V

3 dV

The horizontal cross-section of V at height z is a washer with outer radius
?

4´ z2

(determined by the equation of the sphere) and inner radius
?

2 (determined by the
equation of the cylinder).
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z

y

x

(0,
√
2,
√
2)

(0,
√
4− z2, z)

x2 + y2 + z2 = 4

x2+y2=2

So the cross-section has area π
(?

4´ z2
)2 ´ π

(?
2
)2

= π
(
2´ z2) and

¡

V

∇∇∇ ¨ F dV = 3
¡

V

dV = 3
ż

?
2

´
?

2
π
(
2´ z2)dz = 6π

ż

?
2

0

(
2´ z2)dz = 6π

(
2
?

2´ 23/2

3
)

= 8
?

2π

(c) By the divergence theorem
ĳ

S2

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

S1

F ¨ n̂ dS = 16
?

2π

S-35: By the divergence theorem
ĳ

BV

E ¨ n̂ dS =

¡

V

∇∇∇ ¨ E dV

So by Gauss’ law
¡

V

∇∇∇ ¨ E dV = 4π

¡

V

ρ dV ñ
¡

V

[
∇∇∇ ¨ E´ 4πρ

]
dV = 0

This is true for all solids V for which the divergence theorem applies. If there were some
point in R3 for which∇∇∇ ¨ E´ 4πρ were, say, strictly bigger than zero, then, by continuity,
we could find a ball Bε centered on that point with∇∇∇ ¨ E´ 4πρ ą 0 everywhere on Bε.
This would force

ţ

Bε

[
∇∇∇ ¨ E´ 4πρ

]
dV ą 0, which violates

ţ

V
[
∇∇∇ ¨ E´ 4πρ

]
dV = 0

with V set equal to Bε. Hence∇∇∇ ¨ E´ 4πρ must be zero everywhere.

S-36: By the divergence theorem
ĳ

BV

r ¨ n̂ dS =

¡

V

∇∇∇ ¨ r dV =

¡

V

∇∇∇ ¨ (x ı̂ıı + y ̂ + z k̂)dV =

¡

V

3 dV = 3 Volume(V)
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Our gemetric explanation starts with the observation that the volume of the cone with
vertex (0, 0, 0) and base a tiny piece of surface dS is 1

3 times the area of the base times the
height of the cone. The height of the cone is |n̂ ¨ r|, where r is a point in dS. So the volume
of the cone is 1

3 |n̂ ¨ r|dS.

n̂

(0, 0, 0)

r

dS

First assume that (0, 0, 0) is in V and V is convex. Then

• n̂ ¨ r ą 0, and the volume is 1
3 n̂ ¨ r dS.

• the cone is contained in V and
• V is the union of all the tiny conical pieces with dS running over BV.

So
Volume(V) =

1
3

ĳ

BV

r ¨ n̂ dS

To generalise to the case that V is not convex or (0, 0, 0) is not in V, write V as the
difference between a large convex solid and one or more smaller convex solids.

S-37: (a) We’ll parametrize the sphere using the spherical coordinates θ and ϕ.

x = 3 sin ϕ cos θ

y = 3 sin ϕ sin θ

z = 3 cos ϕ

with 0 ď θ ď 2π, 0 ď ϕ ď π. Since

(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
=
(´ 3 sin ϕ sin θ , 3 sin ϕ cos θ , 0

)

( Bx
Bϕ

,
By
Bϕ

,
Bz
Bϕ

)
= (3 cos ϕ cos θ , 3 cos ϕ sin θ , ´3 sin ϕ)

(3.3.1) in the CLP-4 text yields

n̂ dS = ˘
(Bx
Bθ

,
By
Bθ

,
Bz
Bθ

)
ˆ
( Bx
Bϕ

,
By
Bϕ

,
Bz
Bϕ

)
dθdϕ

= ˘(´ 3 sin ϕ sin θ , 3 sin ϕ cos θ , 0
)ˆ (3 cos ϕ cos θ , 3 cos ϕ sin θ , ´3 sin ϕ) dθdϕ

= ˘(´ 9 sin2 ϕ cos θ , ´9 sin2 ϕ sin θ , ´9 sin ϕ cos ϕ
)

dθdϕ

= ¯9 sin ϕ
(

sin ϕ cos θ , sin ϕ sin θ , cos ϕ
)

dθdϕ
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To get an outward pointing normal we need the + sign. For example, with the + sign,
the z-component is 9 sin ϕ cos ϕ = 9

2 sin(2ϕ) so that the normal is pointing upward when
0 ă ϕ ă π

2 , i.e. in the northern hemisphere, and is pointing downward when π
2 ă ϕ ă π,

i.e. in the southern hemisphere. (As a further consistency check, note that n̂(θ, ϕ) is
parallel to r(θ, ϕ).) So

ĳ

S

F ¨ n̂ dS = 9
ż 2π

0
dθ

ż π

0
dϕ sin ϕ (0, 0, 3 sin ϕ cos θ + 3 cos ϕ)¨( sin ϕ cos θ , sin ϕ sin θ , cos ϕ

)

= 27
ż 2π

0
dθ

ż π

0
dϕ
(

sin2 ϕ cos ϕ cos θ + sin ϕ cos2 ϕ
)

= 54π

ż π

0
dϕ sin ϕ cos2 ϕ since

ż 2π

0
cos θ dθ = 0

= ´18π
[

cos3 ϕ
]π

0

= 36π

(b) Set
V =

 

(x, y, z) P R3 ˇ
ˇ x2 + y2 + z2 ď 9

(

Since
∇∇∇ ¨ F =

B
Bz
(
x + z

)
= 1

the divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV =

¡

V

dV =
4
3

π33 = 36π

S-38: Denote by V the cube specified in the problem. Then BV consists of S together with
the face F in the plane z = 0, oriented with the normal being ´k̂.

n̂ = k̂

(0, 1, 1)

(1, 1, 0)
F

y

z

x

As

∇∇∇ ¨ F =
B
Bx
(
y cos(y2) + z´ 1

)
+
B
By

(
z

x + 1
+ 1
)
+
B
Bz
(
xyez2)

=
B
Bz
(
xyez2)
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the divergence theorem (Theorem 4.2.2 of the CLP-4 text) gives

ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

F

F ¨ (´k̂)dS

=

ż 1

0
dx

ż 1

0
dy

ż 1

0
dz

B
Bz
(
xyez2)

+

ż 1

0
dx

ż 1

0
dy xyez2

ˇ

ˇ

ˇ

z=0

=

ż 1

0
dx

ż 1

0
dy xyez2

ˇ

ˇ

ˇ

z=1

z=0
+

ż 1

0
dx

ż 1

0
dy xyez2

ˇ

ˇ

ˇ

z=0

=

ż 1

0
dx

ż 1

0
dy xyez2

ˇ

ˇ

ˇ

z=1

= e
[

x2

2

]1

0

[
y2

2

]1

0

=
e
4

S-39: (a) The equation of the surface is G(x, y, z) = z´ xy = 0. So one normal to the
surface at (1, 1, 1) is (∇∇∇G)(1, 1, 1) = (´y,´x, 1)

ˇ

ˇ

(x,y,z)=(1,1,1) = (´1,´1, 1) and a unit

upward pointing normal at (1, 1, 1) is (´1,´1,1)
|(´1,´1,1)| =

1?
3
(´1,´1, 1).

(b) For the surface G(x, y, z) = z´ xy, so that, by (3.3.3) in the CLP-4 text,

n̂ dS = ˘ ∇∇∇G(x, y, z)
∇∇∇G(x, y, z) ¨ k̂dxdy = ˘(´y,´x, 1)dxdy

The “+” sign gives the upward normal, so the specified upward flux is

ĳ

S

F ¨ n̂ dS =

ĳ

x2+y2ď9

(y, x, 3) ¨ (´y´ x, 1)dxdy =

ĳ

x2+y2ď9

(3´ x2 ´ y2)dxdy

Switching to polar coordinates, the flux is

ĳ

S

F ¨ n̂ dS =

ż 3

0
dr r

ż 2π

0
dθ (3´ r2) = 2π

ż 3

0
dr (3r´ r3) = 2π

(3
232 ´ 1

434) = ´27π
2

(c) by direct evaluation: Parametrize the specified surface using the cylindrical
coordinates θ and z.

x = 3 cos θ

y = 3 sin θ

z = z
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with 0 ď θ ď 2π and 9 sin θ cos θ ď z ď 10. Then, using (3.3.1) in the CLP-4 text,

Br
Bθ

=
(´ 3 sin θ , 3 cos θ , 0

)

Br
Bz

=
(
0 , 0 , 1

)

Br
Bθ
ˆ Br
Bz

= 3
(

cos θ , sin θ , 0
)

n̂ dS =
Br
Bθ
ˆ Br
Bz

dθ dz = 3
(

cos θ , sin θ , 0
)

dθ dz

(We have taken the + sign in n̂ dS = ˘ Br
Bθ ˆ Br

Bz dθ dz to give the outward pointing
normal.) So the specified flux is

ĳ

F ¨ n̂ dS = 3
ż 2π

0
dθ

ż 10

9 cos θ sin θ
dz

F=(y,x,3)
hkkkkkkkkkkkikkkkkkkkkkkj(
3 sin θ , 3 cos θ , 3

) ¨( cos θ , sin θ , 0
)

= 18
ż 2π

0
dθ

ż 10

9 cos θ sin θ
dz sin θ cos θ

= 18
ż 2π

0
dθ
[
10´ 9 cos θ sin θ

]
sin θ cos θ

= ´9ˆ 18
ż 2π

0
dθ sin2 θ cos2 θ

since
ż 2π

0
sin θ cos θ dθ =

1
2

ż 2π

0
sin(2θ) dθ = 0

= ´9ˆ 18ˆ 1
4

ż 2π

0
dθ sin2(2θ)

= ´81
2

ż 2π

0
dθ

1´ cos(4θ)

2

= ´81
2

[
θ

2
´ sin(4θ)

8

]2π

0

= ´81
2

π

For an efficient, sneaky, way to evaluate
ş2π

0 dθ sin2(2θ) see Example 2.4.4 in the CLP-4
text.

(c) using the divergence theorem: Note that if x2 + y2 ď 9, then |x| ď 3 and y ď 3 so that
|xy| ď 9 ă 10. Set

S̃ =
 

(x, y, z)
ˇ

ˇ x2 + y2 = 9, xy ď z ď 10
(

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 9, xy ď z ď 10
(

Note that the boundary, BV, of V consists of three parts:

˝ the side S̃, with outward pointing normal (which is the surface and the normal
specified in part (c) of the question)
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˝ the bottom, which is the surface S of part (b), with downward pointing normal
(which is opposite the normal specified in part (b)) and

˝ the top, which is the surface ST =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 9, z = 10
(

, with normal
n̂ = k̂.

Here is a sketch of the part of BV that is in the first octant.

z

y

x

S̃

ST

S

Note that∇∇∇ ¨ F = 0. So the divergence theorem yields

0 =

¡

V

∇∇∇ ¨ F dV

=

ĳ

B̃V

F ¨ n̂ dS

=

ĳ

S̃

F ¨ n̂ dS´
ĳ

S

F ¨ n̂ dS +

ĳ

ST

F ¨ k̂ dS

This implies

ĳ

S̃

F ¨ n̂ dS =

ĳ

S

F ¨ n̂ dS´
ĳ

ST

F ¨ k̂ dS

= ´27π
2 ´

ĳ

x2+y2ď9

3 dS

= ´27π
2 ´ 3π32 = ´81π

2

S-40: (a) The divergence of F is

∇∇∇ ¨ F = B
Bx (x + sin y) + B

By (z + y) + B
Bz (z

2)

= 2 + 2z
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(b) Set

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 25, 0 ď z ď
b

25´ x2 ´ y2
(

ST =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 = 25, z ě 0
(

SB =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 25, z = 0
(

Note that the boundary, BV, of V consists ot two parts — ST with upward normal, and SB
with normal ´k̂. We are to find the flux through ST with upward normal. By the
divergence theorem, it is

ĳ

ST

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV ´
ĳ

SB

F ¨ (´k̂)dS

=

¡

V

(2 + 2z)dV

since F ¨ k̂ = z2 = 0 on SB. We’ll compute the volume integral by expressing it as an
iterated integral, with the z integration on the outside. In V, z ranges for 0 to 5. The set of
points at exactly height z in V is

 

(x, y, z)
ˇ

ˇ x2 + y2 ď 25´ z2 (. So
ĳ

ST

F ¨ n̂ dS =

ż 5

0
dz

ĳ

x2+y2ď25´z2

dx dy (2 + 2z) =
ż 5

0
dz (2 + 2z)

ĳ

x2+y2ď25´z2

dx dy

=

ż 5

0
dz π(25´ z2)(2 + 2z)

since
ť

x2+y2ď25´z2 dx dy is the area of a disk of radius
?

25´ z2

= π

ż 5

0
dz (50´ 2z2 + 50z´ 2z3)

= π
(

50ˆ 5´ 2
53

3
+ 50

52

2
´ 2

54

4

)
= π53

(
2´ 2

3
+ 5´ 5

2

)
= π 53

(4
3
+

5
2

)

= π
23
6

53 = 479
1
6

π

(c) To start, consider any closed surface S that is the boundary of a solid V. Use

˝ the outward pointing normal for S,
˝ |V| to denote the volume of V, and
˝ z̄ = 1

|V|

ţ

V z dV to denote the z-component of the centroid (i.e. centre of mass with
constant density) of V.

Then, by the divergence theorem
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV =

¡

V

(2 + 2z)dV = 2
¡

V

dV + 2
¡

V

z dV

= 2|V|+ 2|V|z̄
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This takes the value ´9 if and only if

2|V|z̄ = ´9´ 2|V| ðñ z̄ = ´ 9
2|V| ´ 1

One surface which obeys this condition is the unit cube (with outward normal) centred
on
(
0, 0,´11

2

)
.

S-41: (a) The constant z cross-section of the cone at height 0 ď z ď 1 is a circle of radius
2z. So we may parametrize the cone by

r(θ, z) = 2z cos θ ı̂ıı + 2z sin θ ̂ + z k̂ 0 ď θ ă 2π, 0 ď z ď 1

Since

Br
Bθ =

(´ 2z sin θ , 2z cos θ , 0
)

Br
Bz =

(
2 cos θ , 2 sin θ , 1

)

Br
Bθ ˆ Br

Bz =
(
2z cos θ , 2z sin θ , ´4z

)

(3.3.1) in the CLP-4 text yields that the element of surface area for this parametrization is

dS =
ˇ

ˇ

Br
Bθ ˆ Br

Bz

ˇ

ˇdθdz = 2z
ˇ

ˇ(cos θ , sin θ , ´2
)ˇ
ˇdθdz

= 2
?

5z dθdz

In our parametrization the condition x ď y becomes 2z cos θ ď 2z sin θ, which, for z ą 0,
is equivalent to tan θ ě 1. So the specified integral is

ĳ

S

z2 dS = 2
?

5
ż 1

0
dz

ż π/2

π/4
dθ z3 =

?
5π

2

ż 1

0
dz z3 =

?
5π

8

(b) Let’s first do some strategizing. We have to compute a flux integral over a surface that
is not closed. There are two potential sneaky attacks that come to mind.

˝ The first uses Stokes’ theorem. But the flux integral in Stokes’ theorem is of the
form

ť

S∇∇∇ˆA ¨ n̂ dS. So to be able to apply Stokes’ theorem in the current
problem, F has to be of the form∇∇∇ˆA. That is, F has to have a vector potential. We
know that in order for F to have a vector potential, it must pass the screening test
∇∇∇ ¨ F = 0. Our F = z k̂ fails this screening test. So we can’t use Stokes’ theorem.

˝ The second uses the divergence theorem. But the flux integral in the divergence
theorem is over the boundary of a solid. That is not the case for our S. So in order to
apply the divergence theorem in the current problem, we have to enlarge S to the
boundary of a solid. There are many ways to do this. But they all appear fairly
complicated. So it does not seem wise to use the divergence theorem.

So it looks like we have to evaluate the flux integral directly. To do so, we have to
determine n̂ dS for the specified rectangle. Look at the sketch of S below. It is part of a
plane, and that plane is invariant under translations parallel to the x axis. As the plane
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x

y

z
(0, 0, 4)

(0, 2, 0)

(5, 0, 4)

(5, 2, 0)
does not pass through the origin, the equation of the plane has to be of the form
by + cz = 1. For (0, 0, 4) to be on the plane, we need c = 1

4 . For (0, 2, 0) to be on the plane,
we need b = 1

2 . So S is contained in the plane G(x, y, z) = y
2 +

z
4 = 1 and equation (3.3.3)

in the CLP-4 text gives that

n̂ dS = ˘ ∇∇∇G(x, y, z)
∇∇∇G(x, y, z) ¨ k̂dxdy = ˘(0, 1/2, 1/4)

1/4
dxdy = ˘(0, 2, 1)dxdy

The problem specifies that the normal is to be upward, i.e. is to have a positive
z-component. So

n̂ dS = (0, 2, 1)dxdy

Again looking at the sketch of S above we see, as (x, y, z) runs over S, (x, y) runs over

R =
 

(x, y)
ˇ

ˇ 0 ď x ď 5, 0 ď y ď 2
(

Thus our flux integral is

ĳ

S

F ¨ n̂ dS =

ĳ

R

z
hkkkikkkj(
4´ 2y

)
k̂ ¨

n̂ dS
hkkkkkkikkkkkkj

(0, 2, 1)dxdy =

ż 2

0
dy

ż 5

0
dx (4´ 2y)

=

ż 2

0
dy 5(4´ 2y) = 5

[
4y´ y2

]2

0
= 20

(c) The divergence of the given vector field is∇∇∇ ¨ F = 2z, which is pretty simple. So let’s
use the divergence theorem. If V =

 

(x, y, z)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 2, 0 ď z ď 3
(

, the
divergence theorem says that

ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV = 2
¡

V

z dV

This integral would be easy enough to evaluate directly, but we don’t need to. The
average value of z (i.e. the z-coordinate of the centre of mass with constant density) is 3

2 ,
by symmetry. Since V has volume 6, that average value of z is also

z̄ =
1
6

¡

V

z dV =
3
2
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So
ţ

V z dV = 9
ĳ

S

F ¨ n̂ dS = 2
¡

V

z dV = 18

S-42: (a) For the surface z = f (x, y) = 1´ x2 ´ y2, with an upwards pointing normal,

n̂ dS =
[´ fx(x, y)dx´ fy(x, y) + k̂

]
dxdy =

[
2x ı̂ıı + 2y ̂ + k̂

]
dxdy

by (3.3.2) in the CLP-4 text. So the specified upward flux is
ĳ

σ1

F ¨ n̂ dS

=

ĳ

x2+y2ď1

 

[a(y2 + z2) + bxz] ı̂ıı + [c(x2 + z2) + dyz] ̂ + x2 k̂
(

¨  2x ı̂ıı + 2y ̂ + k̂
(

z=1´x2´y2 dxdy

=

ĳ

x2+y2ď1

 

[2ax(y2+z2) + 2bx2z] + [2cy(x2+z2) + 2dy2z] + x2(

z=1´x2´y2 dxdy

Now
ĳ

x2+y2ď1

 

2ax(y2 + z2)
(

z=1´x2´y2 dxdy = 0

because the integrand is odd under x Ñ ´x and
ĳ

x2+y2ď1

 

2cy(x2 + z2)
(

z=1´x2´y2 dxdy = 0

because the integrand is odd under y Ñ ´y. So that leaves
ĳ

σ1

F ¨ n̂ dS =

ĳ

x2+y2ď1

 

2bx2z + 2dy2z + x2(

z=1´x2´y2 dxdy

We’ll switch to polar coordinates to evaluate the remaining integral.
ĳ

σ1

F ¨ n̂ dS =

ż 1

0
dr r

ż 2π

0
dθ

 

2br2z cos2 θ + 2dr2z sin2 θ + r2 cos2 θ
(

z=1´r2

Now
ż 2π

0
cos2 θ dθ =

ż 2π

0

cos(2θ) + 1
2

dθ =

[
sin(2θ)

4
+

θ

2

]2π

0
= π

ż 2π

0
sin2 θ dθ =

ż 2π

0

1´ cos(2θ)

2
dθ =

[
θ

2
´ sin(2θ)

4

]2π

0
= π
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For an efficient, sneaky, way to evaluate
ş2π

0 cos2 θ dθ and
ş2π

0 sin2 θ dθ, see Example 2.4.4
in the CLP-4 text. So, we finally have

ĳ

σ1

F ¨ n̂ dS =

ż 1

0
dr

 

2πbr3(1´ r2) + 2πdr3(1´ r2) + πr3(

= 2πb
[1

4
´ 1

6

]
+ 2πd

[1
4
´ 1

6

]
+ π

1
4
=

π

4
+

π(b + d)
6

(b), (c) Here is a side view of σ1, σ2 and σ3.

σ1, z = 1− x2 − y2

σ2, z = x2 + y2 − 1

σ3

Set

Vb =
 

(x, y, z)
ˇ

ˇ 0 ď z ď 1´ x2 ´ y2, x2 + y2 ď 1
(

Vc =
 

(x, y, z)
ˇ

ˇ x2 + y2 ´ 1 ď z ď 1´ x2 ´ y2, x2 + y2 ď 1
(

Then BVb = σ1 Y σ3 and BVc = σ1 Y σ2, all with outward pointing normals. Since the
divergence of F is

∇∇∇ ¨ F =
B
Bx

[a(y2 + z2) + bxz] +
B
By

[c(x2 + z2) + dyz] +
B
Bz

[x2] = (b + d)z

the divergence theorem gives

ĳ

σ1Yσ3

F ¨ n̂ dS =

¡

Vb

∇∇∇ ¨ F dV = (b + d)
¡

Vb

z dV

ĳ

σ1Yσ2

F ¨ n̂ dS =

¡

Vc

∇∇∇ ¨ F dV = (b + d)
¡

Vc

z dV

Now on Vb, z ě 0 and z ą 0 except on σ3. So
ţ

Vb
z dV ą 0 and

ť

σ1Yσ3
F ¨ n̂ dS is zero if

and only if d = ´b. That’s the answer to part (b).

On the other hand, Vc is even under z Ñ ´z so that
ţ

Vc
z dV = 0. Consequently

ť

σ1Yσ3
F ¨ n̂ dS is zero for all a, b, c, d. That’s the answer to part (c).
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S-43: We will be using the divergence theorem in both parts (a) and b. So as a prelimary
calculation, let’s find the divergence of H(x, y, z) = (x,y,z)´(a,b,c)

[(x´a)2+(y´b)2+(z´b)2]3/2 for any

(a, b, c). If (x, y, z) ‰ (a, b, c),

∇∇∇ ¨H(x, y, z)

=
B
Bx

x´ a

[(x´ a)2 + (y´ b)2 + (z´ c)2]3/2 +
B
By

y´ b

[(x´ a)2 + (y´ b)2 + (z´ c)2]3/2

+
B
Bz

z´ c

[(x´ a)2 + (y´ b)2 + (z´ c)2]3/2

=

[
(x´ a)2 + (y´ b)2 + (z´ c)2] ´ (x´ a) 3

2(2(x´ a))
[
(x´ a)2 + (y´ b)2 + (z´ c)2

]5/2

+

[
(x´ a)2 + (y´ b)2 + (z´ c)2] ´ (y´ b) 3

2(2y)
[
(x´ a)2 + (y´ b)2 + (z´ c)2

]5/2

+

[
(x´ a)2 + (y´ b)2 + z2] ´ (z´ c) 3

2(2(z´ c))
[
(x´ a)2 + (y´ b)2 + (z´ c)2

]5/2

=
3
[
(x´ a)2 + (y´ b)2 + (z´ c)2] ´ 3(x´ a)2 ´ 3(y´ b)2 ´ 3(z´ c)2

[
(x´ a)2 + (y´ b)2 + (z´ c)2

]5/2

= 0

If (x, y, z) = (a, b, c), H(x, y, z) is not defined and hence∇∇∇ ¨H(x, y, z) is also not defined.

(b) By the above preliminary computation with (a, b, c) = (3, 2, 2),∇∇∇ ¨G is defined and
zero for all (x, y, z) ‰ (3, 2, 2), and, in particular for all (x, y, z) in

V =
 

(x, y, z)
ˇ

ˇ x2 + 2y2 + 3z2 ď 16
(

So, by the divergence theorem,
ĳ

S

G ¨ n̂ dS =

¡

V

∇∇∇ ¨G dV = 0

(a) Because (1, 1, 2) is inside V, we cannot use the argument of part (b), to conclude that
the integral is zero. Let ε ą 0 be small enough that

Sε =
 

(x, y, z)
ˇ

ˇ (x´ 2)2 + (y´ 1)2 + (z´ 1)2 = ε2 (

is completely contained inside V, as in the sketch below.

(2,1,1)
Vε

SSε
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Set
Vε =

 

(x, y, z)
ˇ

ˇ x2 + 2y2 + 3z2 ď 16, (x´ 2)2 + (y´ 1)2 + (z´ 1)2 ě ε2 (

The boundary, BVε, of V consists of two parts — S and Sε, with the normals as in the
figure above. The divergence∇∇∇ ¨ F of F is well-defined and zero throughout Vε.
Consequently, the divergence theorem gives

0 =

¡

V

∇∇∇ ¨ F dV =

ĳ

S

F ¨ n̂ dS +

ĳ

Sε

F ¨ n̂ dS

So
ĳ

S

F ¨ n̂ dS = ´
ĳ

Sε

F ¨ n̂ dS

The unit normal to Sε at the point (x, y, z) on Sε is

n̂ = ´1
ε

[
(x´ 2) ı̂ıı + (y´ 1) ̂ + (z´ 1) k̂

]

(Recall that |(2´ 1) ı̂ıı + (y´ 1) ̂ + (z´ 1) k̂| = ε on Sε. So, on Sε,

F ¨ n̂ = ´1
ε

(
(x, y, z)´ (2, 1, 1)

[
(x´ 2)2 + (y´ 1)2 + (z´ 1)2

]3/2

)
¨ [(x´ 2) ı̂ıı + (y´ 1) ̂ + (z´ 1) k̂

]

= ´1
ε

(
(x´ 2)2 + (y´ 1)2 + (z´ 1)2

[
(x´ 2)2 + (y´ 1)2 + (z´ 1)2

]3/2

)

= ´ 1
ε2

Hence
ĳ

S

F ¨ n̂ dS = ´
ĳ

Sε

(
´ 1

ε2

)
dS =

1
ε2 (4πε2) = 4π

S-44: This was part of Theorem 4.2.9 in the CLP-4 text. To prove it apply the divergence
theorem, but with F replaced by aˆ F, where a is any constant vector.

ĳ

BΩ

(aˆ F) ¨ n̂ dS =

¡

V

∇∇∇ ¨ (aˆ F) dV

=

¡

Ω

[
F ¨ (∇∇∇ˆ a)

looomooon

=0

´a ¨ (∇∇∇ˆ F)
]

dV

= ´
¡

Ω

a ¨ (∇∇∇ˆ F) dV = ´a ¨
¡

Ω

∇∇∇ˆ F dV

To get the second line we used the vector identity Theorem 4.1.4.d in the CLP-4 text. To
get the third line, we used that a is a constant, so that all of its derivatives are zero. For all
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vectors a ¨ (bˆ c) = (aˆ b) ¨ c (in case you don’t remember this, it was Lemma 4.1.8.a in
the CLP-4 text) so that

(aˆ F) ¨ n̂ = a ¨ (Fˆ n̂)

and

a ¨
ĳ

BΩ

Fˆ n dS = ´a ¨
¡

Ω

∇∇∇ˆ F dV

ùñ a ¨
"
ĳ

BΩ

Fˆ n dS +

¡

Ω

∇∇∇ˆ F dV
*

= 0

In particular, choosing a = ı̂ıı, ̂ and k̂, we see that all three components of the vector
ť

BΩ Fˆ n dS +
ţ

Ω∇∇∇ˆ F dV are zero. So
¡

Ω

∇∇∇ˆ F dV = ´
ĳ

BΩ

Fˆ n dS =

ĳ

BΩ

n̂ˆ F dS

which is what we wanted show.

S-45: Pressure is force per unit surface area acting normally into a surface. So the force
per unit surface area is ´pn̂. The total force acting on S is

´
ĳ

S

pn̂ dS = ´
¡

E

∇p dV

We are assuming that p is a constant, so that ∇p = 0 and the total force is zero.

S-46: Let Sa denote the sphere x2 + y2 + z2 = a2 and Va denote the solid inside it, which is
the ball x2 + y2 + z2 ď a2. Then, by the divergence theorem, Theorem 4.2.2 in the CLP-4
text,

π(a3 + 2a4) =

ĳ

Sa

F ¨ n̂ dS =

¡

Va

∇∇∇ ¨ F dV

Now, for very small a,∇∇∇ ¨ F is almost equal to∇∇∇ ¨ F(0, 0, 0) on all of Va, and the integral
ţ

Va
∇∇∇ ¨ F dV will be

∇∇∇ ¨ F(0, 0, 0)Volume(Va) + O(a4) =
4
3

πa3∇∇∇ ¨ F(0, 0, 0) + O(a4)

Here O(a4) is an error term that is bounded by a constant times a4. This is consistent with
the above equation if and only if∇∇∇ ¨ F(0, 0, 0) = 3

4 .

S-47: Note that, since z2 ´ 2az = (z´ a)2 ´ a2,

S =
 

(x, y, z
ˇ

ˇ x2 + y2 + (z´ a)2 = 4a2, z ě 0
(
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Let V be the solid

V =
 

(x, y, z)
ˇ

ˇ x2 + y2 + (z´ a)2 ď 4a2, z ě 0
(

It is the interior of the sphere of radius 2a centred on (0, 0, a). The surface of V (with
outward normal) is the union of S (with normal pointing away from the origin) and the
disk

B =
 

(x, y, 0)
ˇ

ˇ x2 + y2 ď 3a2 (

with normal ´k̂. Hence, by the Divergence Theorem
ĳ

S

F ¨ n̂ dS =

¡

V

n ¨ F dV ´
ĳ

B

F ¨ (´k̂)dS

=

¡

V

(2x + 2y + 1)dV ´
ĳ

B

(´3´ x)dS

Both V and B are invariant under x Ñ ´x and under y Ñ ´y, so
ţ

V x dV =
ţ

V y dV =
ť

B x dS = 0 and
ĳ

S

F ¨ n̂ dS =

¡

V

dV + 3
ĳ

B

dS

To evaluate the integral over V, we note that z runs from 0 to 3a and that the cross section
of

V =
 

(x, y, z)
ˇ

ˇ 0 ď z ď 3a, x2 + y2 ď 4a2 ´ (z´ a)2, z ě 0
(

with fixed z is the circular disk x2 + y2 ď 4a2 ´ (z´ a)2 = 3a2 + 2az´ z2, which has area
π
(?

3a2 + 2az´ z2
)2. So

ĳ

S

F ¨ n̂ dS =

ż 3a

0
π
(a

3a2 + 2az´ z2
)2 dz + 3 Area(B)

= π

ż 3a

0
(3a2 + 2az´ z2)dz + 3π(3a2)

= π

(
3a2 ˆ 3a + 2aˆ 9a2

2
´ 27a3

3

)
+ 9πa2

= 9πa3 + 9πa2

S-48: (a) Let S denote the boundary ofR. Then “the total flux of F = ∇u out through the
boundary ofR” is given by the integral

I =
ĳ

S

F ¨ n̂ dS

Thanks to the divergence theorem,

I =
¡

R

∇ ¨ F dV =

¡

R

∇ ¨∇u dV =

¡

R

(B2u
Bx2 +

B2u
By2 +

B2u
Bz2

)
dV = 0
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(b) Similarly, “the total flux of G = u∇u out through the boundary ofR” equals

J =
ĳ

S

G ¨ n̂ dS =

¡

R

∇ ¨G dV

Here G = uF (using the notation from part (a)), so by the vector identity of Theorem
4.1.4.c in the CLP-4 text,

∇ ¨G = ∇ ¨ (uF) = (∇u) ¨ F + u(∇ ¨ F)
But F = ∇u, so ∇ ¨ F = ∆u = 0 as in part (a), giving

∇ ¨G = |∇u|2 + 0

In conclusion,

J =
¡

R

∇ ¨G dV =

¡

R

[(Bu
Bx

)2
+
(Bu
By

)2
+
(Bu
Bz

)2]
dV

S-49: (a) This is a classic case for the divergence theorem. The flux we want equals

I =
ĳ

S

F ¨ n̂ dS =

¡

R

∇ ¨ F dV =

¡

R

(2x + 2´ 2)dV = 2
¡

R

x dV

The solidR clearly has reflection symmetry across the plane x = 0. So the x-coordinate
of the centre of mass ofR, i.e. the average value of x overR, i.e.

x̄ =

ţ

R x dV
ţ

R dV
=

ţ

R x dV
Vol(R)

is zero. Hence
I = 2x̄Vol(R) = 0

Alternatively, here is a direct evaluation of 2
ţ

R x dV. The base region x2 + (y´ 1)2 ď 1
is the circular disk of radius 1 centred on (0, 1). In polar coordinates it is

r2 cos2 θ + (r sin θ ´ 1)2 ď 1 or r2 ´ 2r sin θ + 1 ď 1 or r ď 2 sin θ

Because the disk is contained in the upper half plane, the polar angle θ is restricted to
0 ď θ ď π. So, in cylindrical coordinates, the solidR is described by

0 ď θ ď π, 0 ď r ď 2 sin θ, 0 ď z ď r2 sin2 θ

Hence

I = 2
ż π

θ=0

ż 2 sin θ

r=0

ż r2 sin2 θ

z=0
(r cos θ)dz r dr dθ

= 2
ż π

θ=0

ż 2 sin θ

r=0
r4 sin2 θ cos θ dr dθ

= 2
ż π

θ=0
sin2 θ cos θ

[25 sin5 θ

5

]
dθ =

64
5

ż π

θ=0
sin7 θ cos θ dθ =

64
5

[sin8 θ

8

]π

θ=0

= 0
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(b) using part (a): We have
ĳ

S

F ¨ n̂ dS =

ĳ

Sbottom

F ¨ n̂ dS +

ĳ

Stop

F ¨ n̂ dS +

ĳ

Sside

F ¨ n̂dS

On Sbottom, z = 0 and the outward unit normal is n̂ = ´k̂, so F ¨ n̂ = 0. Hence
ĳ

Sbottom

F ¨ n̂ dS =

ĳ

Sbot

0 dS = 0

On Stop, z = y2, so F = (2x, 2y,´2y2) and, by (3.3.2) of the CLP-4 text,

n̂dS = (0,´2y, 1)dxdy

Hence (by the Hint)
ĳ

Sbot

F ¨ n̂ dS =

ĳ

D

[´4y2 ´ 2y2]dxdy

= ´6
ż π

θ=0

ż 2 sin θ

r=0

(
r2 sin2 θ

)
r dr dθ

= ´6
24

4

ż π

θ=0
sin6 θ dθ = ´24

5
6

ż π

θ=0
sin4 θ dθ = ´24

5
6

3
4

ż π

θ=0
sin2 θ dθ

= ´24
5
6

3
4

1
2

ż π

θ=0
dθ = ´24

[5
6

3
4

1
2

π
]
= ´15

2
π

The conclusion is
ĳ

Sside

F ¨ n̂dS =

ĳ

S

F ¨ n̂dS´
ĳ

Stop

F ¨ n̂dS´
ĳ

Sbot

F ¨ n̂dS =
15
2

π

(b) by direct evaluation: Use the polar equation r = 2 sin θ to parametrize Sside:

r(θ, t) = (r cos θ, r sin θ, t) = (2 sin θ cos θ, 2 sin2 θ, t), 0 ď θ ď π, 0 ď t ď y2 = 4 sin4 θ

Then using (3.3.1) in the CLP-4 text,

F ¨ n̂ dS = F ¨
( Br
Bθ
ˆ Br
Bt

)
dθ dt = det




4 sin2 θ cos2 θ 4 sin2 θ ´2t
2(cos2 θ ´ sin2 θ) 4 sin θ cos θ 0

0 0 1


 dθ dt

= det
[

4 sin2 θ cos2 θ 4 sin2 θ

2(cos2 θ ´ sin2 θ) 4 sin θ cos θ

]
dθ dt

=
[
16 sin3 θ cos3 θ ´ 8 sin2 θ

(
cos2 θ ´ sin2 θ

)]
dθ dt

=
[
16 sin3 θ

(
1´ sin2 θ

)
cos θ ´ 8 sin2 θ

(
1´ 2 sin2 θ

)]
dθ dt

= 8
[
2 sin3 θ cos θ ´ 2 sin5 θ cos θ ´ sin2 θ + 2 sin4 θ

]
dθ dt
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so

ĳ

Sside

F ¨ n̂dS = 8
ż π

θ=0

ż 4 sin4 θ

t=0

[
2 sin3 θ cos θ ´ 2 sin5 θ cos θ ´ sin2 θ + 2 sin4 θ

]
dt dθ

= 32
ż π

θ=0

[
2 sin7 θ cos θ ´ 2 sin9 θ cos θ ´ sin6 θ + 2 sin8 θ

]
dθ

= 32
[
2

sin8 θ

8
´ 2

sin10 θ

10

]π

0
´ 32

ż π

θ=0
sin6 θ dθ + 64

ż π

θ=0
sin8 θ dθ

= ´32
5
6

3
4

1
2

π + 64
7
8

5
6

3
4

1
2

π (by the Hint as above)

=
15
2

π.

(b) Offset polar alternative: We can also parametrize S using cylindrical coordinates
translated so that the centre of the base of the cylinder, namely (0, 1, 0), plays the role of
the origin. Then, looking at the figure

(x, y, z)

(x, y, 0)

(0, 1, 0) y

z

x

z

rθ

we see that

x = r cos θ y = 1 + r sin θ z = z

In these coordinates, the base region, x2 + (y´ 1)2 ď 1, z = 0, of the cylinder is 0 ď r ď 1,
z = 0. So we can parametrize S by

x = cos θ, y = 1 + sin θ, z = t, 0 ď θ ď 2π, 0 ď t ď (1 + sin θ)2

By (3.3.1) in the CLP-4 text,

Br
Bt
ˆ Br
Bθ

= det




ı̂ıı ̂ k̂
0 0 1

´ sin θ cos θ 0


 =

(´ cos θ,´ sin θ, 0
)
,

n̂ dS = ´Br
Bt
ˆ Br
Bθ

dt dθ = (cos θ, sin θ, 0)dt dθ
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where we have chosen the sign to give the outward pointing normal. So
ĳ

S

F ¨ n̂dS =

ż 2π

θ=0

ż (1+sin θ)2

t=0

[
cos3 θ + 2(1 + sin θ) sin θ

]
dt dθ

=

ż 2π

0

[
(1 + sin θ)2 cos3 θ + 2(1 + sin θ)3 sin θ

]
dθ

=

ż 2π

0

[
2 sin θ cos3 θ + 6 sin2 θ + 2 sin4 θ

]
dθ

= ´1
2

cos4 θ
ˇ

ˇ

ˇ

2π

0
+ 12

ż π

0
sin2 θ dθ + 4

ż π

0
sin4 θ dθ

= 0 + 12
π

2
+ 4

3
4

π

2
=

15
2

π

To get the third line, we used that the integral over 0 ď θ ď 2π of any odd power of sin θ
or cos θ is zero.

S-50: The circle x2 + y2 = 4y, or equivalently, x2 + (y´ 2)2 = 4, has radius 2 and centre
(0, 2). On the bottom surface, z = 0 and the outward normal is ´k̂, so that

ĳ

D

F ¨ n̂ dS = ´
ĳ

D

F ¨ k̂ dxdy = ´
ĳ

D

(2x + 3y)dxdy

By symmetry, the centre of mass, (x̄, ȳ), of the circle is (0, 2). Here x̄ and ȳ are the average
values

x̄ =

ť

D x dxdy
ť

D dxdy
ȳ =

ť

D y dxdy
ť

D dxdy

of x and y over D. As the disk D has area 4π,
ĳ

D

x dxdy = 4πx̄ = 0
ĳ

D

y dxdy = 4πȳ = 8π

and
ĳ

D

F ¨ n̂ dS = ´4π(2x̄ + 3ȳ) = ´4π(2ˆ 0 + 3ˆ 2) = ´24π

As

∇∇∇ ¨ F =
B
Bx

(x + x2y) +
B
By

(y´ xy2) +
B
Bz

(z + 2x + 3y) = (1 + 2xy) + (1´ 2xy) + (1)

= 3

the divergence theorem gives
ĳ

S

F ¨ n̂ dS =

¡

R

∇∇∇ ¨ F dV ´
ĳ

D

F ¨ n̂ dS

=

¡

R

3 dV ´ (´24π) = 3Vol(R) + 24π = 3ˆ 10 + 24π

= 30 + 24π
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Solutions to Exercises 4.3 — Jump to TABLE OF CONTENTS

S-1: (a) Expressing the left hand side as an iterated integral, with y as the inner
integration variable, we have

ĳ

R

B f
By

(x, y) dx dy =

ż 1

0
dx

[
ż 1

0
dy
B f
By

(x, y)

]

=

ż 1

0
dx
[

f (x, 1)´ f (x, 0)
]

by the fundamental theorem of calculus

=

ż 1

0
f (x, 1) dx´

ż 1

0
f (x, 0) dx

(b) Define F1(x, y) = f (x, y) and F2(x, y) = 0. Then. by Green’s theorem
ĳ

R

B f
By

(x, y) dx dy = ´
ĳ

R

[BF2

Bx
(x, y)´ BF1

By
(x, y)

]
dx dy

= ´
ż

BR

[
F1(x, y)dx + F2(x, y)dy

]

= ´
ż

BR
f (x, y)dx

The boundary of R, oriented counterclockwise, is the union of four line segments.

C1 from (0, 0) to (1, 0)

x

y

(1, 0)

(1, 1)
(0, 1)

R

C1

C2

C3

C4

C2 from (1, 0) to (1, 1)
C3 from (1, 1) to (0, 1)
C4 from (0, 1) to (0, 0)

Now x is constant on C2 and C4 so that
ż

C2

f (x, y)dx =

ż

C4

f (x, y)dx = 0

So, using ´C3 to denote the line segment from (0, 1) to (1, 1)
ĳ

R

B f
By

(x, y) dx dy = ´
[
ż

C1

f (x, y)dx +

ż

C3

f (x, y)dx
]

=

ż

´C3

f (x, y)dx´
ż

C1

f (x, y)dx

=

ż 1

0
f (x, 1) dx´

ż 1

0
f (x, 0) dx
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S-2: Let r(s) = x(s) ı̂ıı + y(s) ̂ be a counterclockwise parametrization of C by arc length.
Then T̂(s) = r1(s) = x1(s) ı̂ıı + y1(s) ̂ is the forward pointing unit tangent vector to C at
r(s) and n̂(s) = r1(s)ˆ k̂ = y1(s) ı̂ıı´ x1(s) ̂. To see that r1(s)ˆ k̂ really is n̂(s), note that
y1(s) ı̂ıı´ x1(s) ̂

• has the same length, namely 1, as r1(s) (recall that r(s) is a parametrization by arc
length),
• lies in the xy-plane and
• is perpendicular to r1(s). (Check that r1(s) ¨ [y1(s) ı̂ıı´ x1(s) ̂

]
= 0.)

• Use the right hand rule to check that r1(s)ˆ k̂ is n̂ rather than ´n̂.

R

C

r′(s)

n̂(s)

r′(s)

n̂(s)

S-3: (a) Parametrize the circle by x = a cos θ, y = a sin θ, 0 ď θ ď 2π. Then
dx = ´a sin θ dθ and dy = a cos θ dθ so that

1
2π

¿

C

x dy´ y dx
x2 + y2 =

1
2π

ż 2π

0

a2 cos2 θ dθ + a2 sin2 θ dθ

a2 cos2 θ + a2 sin2 θ
=

1
2π

ż 2π

0
dθ = 1

(b) The boundary of the square has four sides — one with y = ´1, one with x = 1, one
with y = 1 and one with x = ´1.

(−1,−1) (1,−1)

(−1, 1) (1, 1)

dx=0
x=1

dx=0
x=−1

dy=0
y=−1

dy=0
y=1

To evaluate the integrals over the four sides

˝ parametrize the y = ´1 part by x so that r(x) = x ı̂ıı´ ̂, r1(x) = ı̂ıı, with x running
from ´1 to 1,

˝ parametrize the x = +1 part by y so that r(y) = ı̂ıı + y ̂, r1(y) = ̂, with y running
from ´1 to 1,

˝ parametrize the y = +1 part by x so that r(x) = x ı̂ıı + ̂, r1(x) = ı̂ıı, with x running
from 1 to ´1, and

˝ parametrize the x = ´1 part by y so that r(y) = ´ı̂ıı + y ̂, r1(y) = ̂, with y running
from 1 to ´1,
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so that the integral

1
2π

¿

C

x dy´ y dx
x2 + y2 =

1
2π

y=´1 part
hkkkkkkkikkkkkkkj

ż 1

´1

´(´1)dx
x2 + 1

+
1

2π

x=+1 part
hkkkkkikkkkkj

ż 1

´1

(1)dy
1 + y2 +

1
2π

y=+1 part
hkkkkkkikkkkkkj

ż ´1

1

´(1)dx
x2 + 1

+
1

2π

x=´1 part
hkkkkkkikkkkkkj

ż ´1

1

(´1)dy
1 + y2

= 4
1

2π
arctan x

ˇ

ˇ

ˇ

ˇ

1

´1
=

2
π

[π

4
+

π

4

]
= 1

(c) As in part (a) with a =
?

2, but with θ running from 0 to π, the outer semicircle gives

1
2π

ż π

0

a2 cos2 θ dθ + a2 sin2 θ dθ

a2 cos2 θ + a2 sin2 θ
=

1
2π

ż π

0
dθ =

1
2

x

y

x2 + y2 = 2

x2+y2=1

y=0
dy=0

y=0
dy=0

As in part (a) with a = 1, but with θ running from π to 0, the inner semicircle gives

1
2π

ż 0

π

a2 cos2 θ dθ + a2 sin2 θ dθ

a2 cos2 θ + a2 sin2 θ
=

1
2π

ż 0

π
dθ = ´1

2

The two flat pieces each give zero, since on them y = 0 and dy = 0. So

1
2π

¿

C

x dy´ y dx
x2 + y2 =

1
2
+ 0´ 1

2
+ 0 = 0

S-4: The two partial derivatives

B
Bx

( x
x2 + y2

)
=

(x2 + y2)´ x(2x)

(x2 + y2)2 =
y2 ´ x2

(x2 + y2)2

B
By

( ´y
x2 + y2

)
=
´(x2 + y2)´ (´y)(2y)

(x2 + y2)2 =
y2 ´ x2

(x2 + y2)2

are well-defined and equal everywhere except at the origin (0, 0).

Short discussion: Were it not for the singularity at (0, 0), the vector field of the last
problem would be conservative and the integral

ş

F ¨ dr around any closed curve would
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be zero. But as we saw in parts (a) and (b) of Q[3], this is not the case. On the other hand,
by Green’s theorem (Theorem 4.3.2 in the CLP-4 text), the integral around the boundary
of any region that does not contain (0, 0) is zero, as happened in part (c) of Q[3].

Long discussion: First consider part (c) of Q[3]. The curve C is the boundary of the region

R =
 

(x, y)
ˇ

ˇ 1 ď x2 + y2 ď 2, y ě 0
(

The partial derivatives B
Bx

(
x

x2+y2

)
and B

By

(
´y

x2+y2

)
are well-defined and equal everywhere

in R. So by Green’s theorem

1
2π

¿

C

x dy´ y dx
x2 + y2 =

1
2π

ĳ

R

[ B
Bx

( x
x2 + y2

)
´ B
By

( ´y
x2 + y2

)]
dx dy = 0

which is the answer we got before.

We cannot apply Green’s theorem in this way for parts (a) and (b) of Q[3] because the
singularity at (0, 0) is inside the curve C for both parts (a) and (b). On the other hand
suppose, for simplicity, that 0 ă a ă 1. Denote by Ca, Cb the curves of parts (a) and (b),
respectively. Define R to be the set of points that are inside Cb and outside Ca. That is,

R =
 

(x, y)
ˇ

ˇ ´ 1 ď x ď 1, ´1 ď y ď 1, x2 + y2 ě a2 (

Then the boundary, BR, of R consists of two parts. One part is Cb. The other part is Ca,
but oriented clockwise rather than counterclockwise. We’ll call it ´Ca.

Cb−Ca

R

x

y

Again the partial derivatives B
Bx

(
x

x2+y2

)
and B

By

(
´y

x2+y2

)
are well-defined and equal

everywhere in R. So by Green’s theorem

1
2π

¿

BR

x dy´ y dx
x2 + y2 =

1
2π

ĳ

R

[ B
Bx

( x
x2 + y2

)
´ B
By

( ´y
x2 + y2

)]
dx dy = 0

Consequently

0 =
1

2π

¿

BR

x dy´ y dx
x2 + y2 =

1
2π

¿

Cb

x dy´ y dx
x2 + y2 +

1
2π

¿

´Ca

x dy´ y dx
x2 + y2

=
1

2π

¿

Cb

x dy´ y dx
x2 + y2 ´ 1

2π

¿

Ca

x dy´ y dx
x2 + y2

385



and we conclude that the answers to parts (a) and (b) should be the same.We did indeed
see that in Q[3].

S-5: Solution 1 (direct evaluation): Here is a sketch of C.

(0, 0) (3, 0)

(0, 3) (3, 3)

x=3x=0

y=0

y=3

The square consists of four line segments.

• The bottom line segment may be parametrized r(x) = (x, 0), 0 ď x ď 3. So the line
integral along this segment is

ż 3

0
F(r(x)) ¨ dr

dx
dx =

ż 3

0
(0, 0) ¨ (1, 0) dx = 0

• The second line segment may be parametrized r(y) = (3, y), 0 ď y ď 3. So the line
integral along this segment is

ż 3

0
F(r(y)) ¨ dr

dy
dy =

ż 3

0
(9y2, 6y) ¨ (0, 1) dy =

ż 3

0
6y dy = 27

• The third line segment may be parametrized r(t) = (3´ t, 3), 0 ď t ď 3. So the line
integral along this segment is
ż 3

0
F(r(t)) ¨ dr

dt
dt =

ż 3

0

(
9(3´ t)2 , 6(3´ t)

) ¨ (´1 , 0) dt = ´
ż 3

0
9(3´ t)2 dt = ´81

• The final line segment may be parametrized r(t) = (0, 3´ t), 0 ď t ď 3. So the line
integral along this segment is

ż 3

0
F(r(t)) ¨ dr

dt
dt =

ż 3

0
(0, 0) ¨ (0,´1) dt = 0

The full line integral is
¿

C

F ¨ dr = 0 + 27´ 81 + 0 = ´54

Solution 2 (Green’s theorem): We apply Green’s Theorem.
¿

C

x2y2 dx + 2xy dy =

ż 3

0
dx

ż 3

0
dy
[ B
Bx

(2xy)´ B
By

(x2y2)

]

=

ż 3

0
dx

ż 3

0
dy
[
2y´ 2x2y

]

=

ż 3

0
dx
[
9´ 9x2]

= 27´ 9
33

3
= ´54

386



S-6: Call the trapezoid T.

x

y

(0, 2)

(0,−2)

(1, 1)

(1,−1)

T

By Green’s theorem,

¿

C

(x sin y2 ´ y2)dx + (x2y cos y2 + 3x)dy

=

ĳ

T

" B
Bx

(x2y cos y2 + 3x)´ B
By

(x sin y2 ´ y2)

*

dx dy

=

ĳ

T

(
2xy cos y2 + 3´ 2xy cos y2 + 2y

)
dx dy

=

ĳ

T

(
3 + 2y

)
dx dy

The integral
ť

T(2y)dx dy vanishes because 2y changes sign under y Ñ ´y while the
domain of integration is invariant under y Ñ ´y. The integral

ť

T 3 dx dy is 3 times the
area of the trapezoid, which is its width (1) times the average of its heights
(1

2 [2 + 4]) = 3. So

¿

C

(x sin y2 ´ y2)dx + (x2y cos y2 + 3x)dy = 3ˆ 1ˆ 3 = 9

S-7: (Using Green’s theorem:) By Green’s theorem (Theorem 4.3.2 in the CLP-4 text), using
D to denote the half-disk 0 ď y ď ?4´ x2,

¿

C

(1
3

x2y3 ´ x4y
)

dx +
(
xy4 + x3y2)dy =

ĳ

D

[ B
Bx
(
xy4 + x3y2)´ B

By

(1
3

x2y3 ´ x4y
)]

dxdy

=

ĳ

D

(
x4 + 2x2y2 + y4) dxdy =

ĳ

D

(
x2 + y2)2 dxdy
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Switching to polar coordinates

¿

C

(1
3

x2y3 ´ x4y
)

dx +
(
xy4 + x3y2)dy =

ż 2

0
dr r

ż π

0
dθ r4 = π

r6

6

ˇ

ˇ

ˇ

ˇ

2

0
=

32
3

π

(Using direct evaluation:) Write C as the union of C1, the straight line from (´2, 0) to (2, 0),
and C2, the half-circle r(θ) = x(θ) ı̂ıı + y(θ) ̂ = 2 cos θ ı̂ıı + 2 sin θ ̂, 0 ď θ ď π. As y = 0 at
every point of C1,

ş

C1

(1
3 x2y3 ´ x4y

)
dx +

(
xy4 + x3y2)dy = 0 and

I =
ż

C2

(1
3

x2y3 ´ x4y
)

dx +
(
xy4 + x3y2)dy

=

ż π

0

[(1
3

x(θ)2y(θ)3 ´ x(θ)4y(θ)
)

x1(θ) +
(
x(θ)y(θ)4 + x(θ)3y(θ)2)y1(θ)

]
dθ

=

ż π

0

[(1
3

25 cos2 θ sin3 θ ´ 25 cos4 θ sin θ
)
(´2 sin θ)

+
(
25 cos θ sin4 θ + 25 cos3 θ sin2 θ

)
(2 cos θ)

]
dθ

= 25
ż π

0

(4
3

cos2 θ sin4 θ + 4 cos4 θ sin2 θ
)

dθ

= 25
ż π

0
sin2(2θ)

(1
3

sin2 θ + cos2 θ
)

dθ

= 24
ż π

0
sin2(2θ)

(1
3
[1´ cos(2θ)] + [1 + cos(2θ)]

)
dθ

since cos(2θ) = 2 cos2 θ ´ 1 = 1´ 2 sin2 θ

=
25

3

ż π

0
sin2(2θ)

[
2 + cos(2θ)

]
dθ

=
25

3

ż π

0

[
1´ cos(4θ) + sin2(2θ) cos(2θ)

]
dθ

=
25

3

[
θ ´ 1

4
sin(4θ) +

1
6

sin3(2θ)
]π

0
=

32
3

π

S-8: Let’s use Green’s theorem. The rectangle, which we shall denoteR, is

R = t(x, y)u 1 ď x ď 3, 0 ď y ď 1

x

y

(1, 0) (3, 0)

(1, 1) (3, 1)

R

C
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So Green’s theorem gives
¿

C

(
3y2 + 2xey2)

dx +
(
2yx2ey2)

dy =

ĳ

R

[ B
Bx
(
2yx2ey2)´ B

By
(
3y2 + 2xey2)]

dxdy

=

ĳ

R

[
4xyey2 ´ 6y´ 4xyey2

]
dxdy

= ´6
ż 3

1
dx

ż 1

0
dy y = ´6

ż 3

1
dx

1
2

= ´6

S-9: (a) The curves y = x2 + 4x + 4 and y = 4´ x2 meet when

x2 + 4x + 4 = 4´ x2 ðñ 2x2 + 4x = 2x(x + 2) = 0

So the curves intersect at (0, 4) and (´2, 0). Here is a sketch.

x

y y = x2 + 4x+ 4

y = 4− x2

(−2, 0)

R

C

C

(b) Let
R =

 

(x, y) P R2 ˇ
ˇ x2 + 4x + 4 ď y ď 4´ x2, ´2 ď x ď 0

(

By Green’s theorem (Theorem 4.3.2 in the CLP-4 text)
¿

C

xy dx + (ey + x2)dy =

ĳ

R

!

B
Bx (e

y + x2)´ B
By (xy)

)

dxdy

=

ż 0

´2
dx

ż 4´x2

x2+4x+4
dy x

=

ż 0

´2
dx (´2x2 ´ 4x)x

=

[
´x4

2
´ 4x3

3

]0

´2

= ´8
3
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S-10: The integral that would be used for direct evaluation looks very complicated. So
let’s try Green’s theorem. The curve C is the boundary of the triangle

T =
 

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 2x
(

y=2x

(0, 0) (1, 0)

(1, 2)

x

y

So
ż

C
F ¨ dr =

ż

C

 (
y2 ´ e´y2

+ sin x
)
dx +

(
2xye´y2

+ x
)
dy

(

=

ĳ

T

 

B
Bx
(
2xye´y2

+ x
)´ B

By
(
y2 ´ e´y2

+ sin x
)(

dxdy

=

ĳ

T

 (
2ye´y2

+ 1
)´ (2y + 2ye´y2)(

dxdy

=

ż 1

0
dx

ż 2x

0
dy

 

1´ 2y
(

=

ż 1

0
dx

 

2x´ 4x2(

= 1´ 4
3
= ´1

3

S-11: Here is a sketch of the two curves in question.

x

y

y=x2−4x+3

y=3−x2+2x

(3, 0)

(0, 3)

R

Note that the curves y = x2 ´ 4x + 3 and y = 3´ x2 + 2x intersect when
x2 ´ 4x + 3 = 3´ x2 + 2x or 2x2 ´ 6x = 2x(x´ 3) = 0 or x = 0, 3.
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The integrand for direct evaluation looks complicated. So let’s use Green’s theorem with
F1(x, y) = 2xey +

?
2 + x2, F2(x, y) = x2(2 + ey) and

R =
 

(x, y)
ˇ

ˇ x2 ´ 4x + 3 ď y ď 3´ x2 + 2x, 0 ď x ď 3
(

By Green’s theorem, which is Theorem 4.3.2 in the CLP-4 text,

ż

C

(
2xey +

a

2 + x2
)

dx + x2(2 + ey)dy =

ĳ

R

"BF2

Bx
´ BF1

By

*

dxdy

=

ĳ

R

t2x(2 + ey)´ 2xeyu dxdy

= 4
ż 3

0
dx

ż 3´x2+2x

x2´4x+3
dy x

= 4
ż 3

0
dx (6x´ 2x2)x

= 4
[

2x3 ´ 1
2

x4
]3

0

= 54

S-12: Direct evaluation will lead to three integrals, one for each side of the triangle. The
integral from (0, 0) and (1,´2) and the integral from (1, 2) to (0, 0) will each contain six
(nonconstant) terms. This does not look very efficient. So let’s try Green’s theorem.
Denote by T, the triangle

T =
 

(x, y)
ˇ

ˇ 0 ď x ď 1, ´2x ď y ď 2x
(

y=2x

y=−2x

(0, 0)

(1,−2)

(1, 2)

x

y

It has boundary BT = C, oriented counterclockwise as desired. So, by Green’s theorem,

ż

C
F ¨ dr =

ż

BT

 (3
2 y2 + e´y + sin x

)
dx +

(1
2 x2 + x´ xe´y)dy

(

=

ĳ

T

 

B
Bx
(1

2 x2 + x´ xe´y)´ B
By
(3

2 y2 + e´y + sin x
)(

dxdy

=

ĳ

T

 (
x + 1´ e´y)´ (3y´ e´y)(dxdy

=

ĳ

T

 

x´ 3y + 1
(

dxdy
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Now
ĳ

T

dxdy = Area(T) =
1
2
(4)(1) = 2

ĳ

T

y dxdy = 0 since y is odd under y Ñ ´y

ĳ

T

x dxdy =

ż 1

0
dx

ż 2x

´2x
dy x =

ż 1

0
4x2 dx =

4
3

So
ż

C
F ¨ dr =

4
3
´ 3ˆ 0 + 2 =

10
3

S-13: Set

F =
´y

x2 + y2 ı̂ıı +
x

x2 + y2 ̂

(a) Green’s theorem must be applied to a curve that is closed, so that it is the boundary of
a region in R2. The given curve C is not closed. But it is part of the boundary of

R =
 

(x, y)
ˇ

ˇ ´ 2 ď x ď 2, x2

4 + 1 ď y ď 2
(

Here is a sketch of R.

x

y

R

C

L
(−2, 2) (2, 2)

y = x2

4
+ 1

The boundary of R consists of two parts — C on the bottom and the line segment L from
(2, 2) to (´2, 2) on the top. Note that F is well-defined on all of R and that

B
Bx

F2 ´ B
By

F1 =
B
Bx

x
x2 + y2 +

B
By

y
x2 + y2

=
(x2 + y2)´ x(2x)

(x2 + y2)2 +
(x2 + y2)´ y(2y)

(x2 + y2)2

= 0
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on all of R. So, by Green’s theorem (Theorem 4.3.2 in the CLP-4 text),

ż

C

´y
x2 + y2 dx +

x
x2 + y2 dy =

ĳ

R

( B
Bx

F2 ´ B
By

F1

)
dxdy´

ż

L
F ¨ dr

=

ż

´L
F ¨ dr =

ż 2

´2
F1 dx = ´

ż 2

´2

2
x2 + 4

dx since y = 2 on L

= ´
ż 1

´1

4
4u2 + 4

dx with x = 2u, dx = 2du

= ´ arctan u
ˇ

ˇ

ˇ

1

´1
= ´π

2

In the second line, we used the notation ´L for the line segment from (´2, 2) to (2, 2).

(b) This question looks a lot like that of part (a). But there is a critical difference. Again C
is not closed and again it is part of the boundary of a simple region in the xy-plane,
namely

R =
 

(x, y)
ˇ

ˇ ´ 2 ď x ď 2, x2 ´ 2 ď y ď 2
(

This R is sketched below.

x

y

R

C

L(−2, 2) (2, 2)

y = x2 − 2

We cannot continue as in part (a), using this R, because B
Bx F2 ´ B

By F1 is not zero througout
R. In fact, it is not even defined throughout R — it is not defined at (0, 0), which is a point
of R. We can work around this obstruction by

˝ choosing a number ρ ą 0 that is small enough that the circle Cρ parametrized by

r(θ) = ρ cos θ ı̂ıı + ρ sin θ ̂ 0 ď θ ď 2π

is completely contained inside R (ror example, ρ = 1 is fine)
˝ and then removing from R the interior of Cρ.

This produces the “deformed washer”

W =
 

(x, y)
ˇ

ˇ ´ 2 ď x ď 2, x2 ´ 2 ď y ď 2, x2 + y2 ě ρ2 (

that is sketched below.
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x

y

W

C

Cρ

L(−2, 2) (2, 2)

y = x2 − 2

The boundary of W consists the three parts — the curve of interest C on the bottom, the
line segment L from (2, 2) to (´2, 2) on the top, and the circle ´Cρ (that is Cρ but oriented
clockwise, rather than counter-clockwise) around the hole in the middle. Now
B
Bx F2 ´ B

By F1 is well-defined and zero throughout W. So, by Green’s theorem (Theorem
4.3.2 in the CLP-4 text),

ż

C

´y
x2 + y2 dx +

x
x2 + y2 dy =

ĳ

W

( B
Bx

F2 ´ B
By

F1

)
dxdy´

ż

L
F ¨ dr´

ż

´Cρ

F ¨ dr

=

ż

´L
F ¨ dr +

ż

Cρ

F ¨ dr

We have already found, in part (a), that
ş

´L F ¨ dr = ´π
2 . So it remains only to use

r(θ) = ρ cos θ ı̂ıı + ρ sin θ ̂

r1(θ) = ´ρ sin θ ı̂ıı + ρ cos θ ̂

to evaluate
ż

Cρ

F ¨ dr =
ż 2π

0
F
(
r(θ)

) ¨ r1(θ)dθ

=

ż 2π

0

(
F(r(θ))

hkkkkkkkkkkkkikkkkkkkkkkkkj

´1
ρ

sin θ ı̂ıı +
1
ρ

cos θ ̂
)
¨ (

r1(θ)
hkkkkkkkkkkkikkkkkkkkkkkj

´ρ sin θ ı̂ıı + ρ cos θ ̂
)

dθ =

ż 2π

0
dθ

= 2π

All together
ż

C

´y
x2 + y2 dx +

x
x2 + y2 dy =

ż

´L
F ¨ dr +

ż

Cρ

F ¨ dr = ´π

2
+ 2π =

3π

2

(c) No, F is not conservative. We found, in parts (a) and (b), two different values for the
integrals along two paths, both of which start at (´2, 2) and end at (2, 2). So F does not
have the “path independence” property of Theorem 2.4.6.c in the CLP-4 text and cannot
be conservative.
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S-14: The given integral is of the form
ş

C F ¨ dr with

F =
(
2xey +

?
2 + x2) ı̂ıı + x2(2 + ey) ̂

If we were to try to evaluate this integral directly, then on the y = x2 ´ 4x + 3 part of C,
the integrand would contain x2ey = x2ex2´4x+3. That looks hard to integrate, so let’s try
Green’s theorem. The parabolas y = x2 ´ 4x + 3 and y = 3´ x2 + 2x intersect at (x, y)
with

x2 ´ 4x + 3 = 3´ x2 + 2x ðñ 2x2 ´ 6x = 0 ðñ 2x(x´ 3) = 0
ðñ x = 0 or x = 3

The curve C is the boundary of

R =
 

(x, y)
ˇ

ˇ 0 ď x ď 3, x2 ´ 4x + 3 ď y ď 3´ x2 + 2x
(

It is sketched below.

C

C

x

y

y = x2 − 4x+ 3

y = 3− x2 + 2x

(0, 3)

(3, 0)

R

By Green’s theorem (Theorem 4.3.2 in the CLP-4 text),
ż

C

(
2xey +

?
2 + x2)dx + x2(2 + ey)dy

=

ĳ

R

[ B
Bx
(
x2(2 + ey)

)´ B
By
(
2xey +

?
2 + x2)]dxdy

=

ĳ

R

(
2x(2 + ey)´ 2xey)dxdy

= 4
ż 3

0
dx

ż 3´x2+2x

x2´4x+3
dy x = 4

ż 3

0
dx x

[
(3´ x2 + 2x)´ (x2 ´ 4x + 3)

]

= 4
ż 3

0
dx
(
6x2 ´ 2x3) = 4

(
2ˆ 33 ´ 1

2
34) = 54

S-15: (a) Denote by
R2 =

 

(x, y)
ˇ

ˇ (x´ 2)2 + y2 ď 1
(

the interior of the circle C2. Note that (0, 0) is not in R2. Consequently, Qx ´ Py = 0
everywhere in R2 and, by Green’s theorem (Theorem 4.3.2 in the CLP-4 text),

I2 =

ż

C2

F ¨ dr =
ĳ

R2

(
Qx ´ Py

)
dxdy = 0
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x

y

R2

C2

(2,0)

x

y

R3

C3

(2, 0)

−C1

(b) We cannot blindly apply Green’s theorem to I3 =
ş

C3
F ¨ dr because (0, 0) is in the

interior of C3, so that Qx ´ Py is not identically zero in the interior of C3 — it is not even
defined throughout the interior of C3. We can work around this obstruction by
considering the interior of C3 with the interior of C1 removed. That is, by considering

R3 =
 

(x, y)
ˇ

ˇ x2 + (y´ 2)2 ď 9, x2 + y2 ě 1
(

It is sketched on the right above. The boundary of R3 consists of two parts

˝ the circle C3, oriented counterclockwise, and
˝ the circle ´C1. That is, the circle C1 but oriented clockwise, rather than

counterclockwise.

Then Qx ´ Py is well-defined and zero throughout R3 and, by Green’s theorem,

0 =

ĳ

R3

(
Qx ´ Py

)
dxdy =

ż

C3

F ¨ dr +
ż

´C1

F ¨ dr

=

ż

C3

F ¨ dr´
ż

C1

F ¨ dr

=

ż

C3

F ¨ dr´ π

So
ş

C3
F ¨ dr = π.

(c) Again, we cannot blindly apply Green’s theorem to I4 =
ş

C4
F ¨ dr because (0, 0) is in

the interior of C4. This time we cannot remove the interior of C1 from the interior of C4,
because C1 is not contained in the interior of C4. Instead we pick a number ρ ą 0 which is
small enough that the positively oriented circle

Cρ =
 

(x, y)
ˇ

ˇ x2 + y2 = ρ2 (

is completely inside C4. Then we can define

R4 =
 

(x, y)
ˇ

ˇ (x´ 2)2 + (y´ 2)2 ď 9, x2 + y2 ě ρ2 (

It is sketched on the left below. We can now argue as in part (b). The boundary of R4
consists of two parts

˝ the circle C4, oriented counterclockwise, and
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˝ the circle ´Cρ. That is, the circle Cρ but oriented clockwise, rather than
counterclockwise.

Then Qx ´ Py is well-defined and zero throughout R4 and, by Green’s theorem,

0 =

ĳ

R4

(
Qx ´ Py

)
dxdy

=

ż

C4

F ¨ dr +
ż

´Cρ

F ¨ dr

=

ż

C4

F ¨ dr´
ż

Cρ

F ¨ dr

So
ş

C4
F ¨ dr =

ş

Cρ
F ¨ dr.

To complete our computation, we have to determine
ş

Cρ
F ¨ dr. We can do so by repeating

the same “removing a small disk containing (0, 0)” argument for the third time. Set

R5 =
 

(x, y)
ˇ

ˇ x2 + y2 ď 1, x2 + y2 ě ρ2 (

Then the boundary of R5 consists of C1 and ´Cρ, and, as Qx ´ Py is well-defined and zero
throughout R5,

0 =

ĳ

R5

(
Qx ´ Py

)
dxdy

=

ż

C1

F ¨ dr +
ż

´Cρ

F ¨ dr

= π ´
ż

Cρ

F ¨ dr

So
ş

C4
F ¨ dr =

ş

Cρ
F ¨ dr = π.

x

y

R4

C4

(2, 2)

−Cρ

x

y

R5

C1

−Cρ
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S-16: (a) If (x, y) ‰ (0, 0), we have

Qx ´ Py =
B
Bx

( y´ x
x2 + y2

)
´ B
By

( x + y
x2 + y2

)

=
´(x2 + y2)´ (y´ x)(2x)

(x2 + y2)2 ´ (x2 + y2)´ (x + y)(2y)

(x2 + y2)2

= 0

(b) Parametrize CR by

r(θ) = R cos θ ı̂ıı + R sin θ ̂ 0 ď θ ď 2π

So

ż

CR

F ¨ dr =
ż 2π

0

F(r(θ))
hkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkj

1
R
 (

cos θ + sin θ
)
ı̂ıı +
(

sin θ ´ cos θ
)
̂
( ¨(

r1(θ)
hkkkkkkkkkkkkikkkkkkkkkkkkj

´R sin θ ı̂ıı + R cos θ ̂
)

dθ

=

ż 2π

0
(´1) dθ

= ´2π

(c) If F were conservative, the line integral
ş

C F ¨ dr would be 0 for any closed curve C, by
Theorem 2.4.6.b in the CLP-4 text. So F is not conservative. Note that F is not defined at
(x, y) = (0, 0) and so fails the screening test∇∇∇ˆ F = 0 at (x, y) = (0, 0).

(d) Denote byR the interior of the triangle C. It is the grey region in the figure

(1, 1)(0, 1)

(1, 0) x

y

R
C

Note that (0, 0) is not inR. So Qx ´ Py is defined and zero throughoutR. So, by Green’s
theorem (Theorem 4.3.2 in the CLP-4 text),

ż

C
F ¨ dr =

ĳ

R

(
Qx ´ Py

)
dxdy = 0

(e) Note that (0, 0) is in the interior of triangle C specified for this part. So Qx ´ Py is not
defined in that interior and we cannot apply Green’s theorem precisely as we did in part
(d). We can work around this obstruction by

˝ picking a number r ą 0 that is small enough that the circle Cr, of radius r centred on
(0, 0), is completely contained in the interior of the triangle C.
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˝ Then we work with the regionR defined by removing the interior of the circle Cr
from the interior of the triangle C. It is the grey region sketched below.

(1, 1)

(0, 1)

(0, 1)

−Cr

x

y

R C

The boundary ofR consists of two parts

˝ the triangle C, oriented counterclockwise, and
˝ the circle ´Cr. That is, the circle Cr, but oriented clockwise, rather than

counterclockwise.

Then Qx ´ Py is well-defined and zero throughoutR and, by Green’s theorem,

0 =

ĳ

R

(
Qx ´ Py

)
dxdy

=

ż

C
F ¨ dr +

ż

´Cr

F ¨ dr

=

ż

C
F ¨ dr´

ż

Cr

F ¨ dr

So
ş

C F ¨ dr =
ş

Cr
F ¨ dr. By part (b), with R = r,

ş

Cr
F ¨ dr = ´2π, so

ş

C F ¨ dr = ´2π

S-17: (a) The given integral is of the form
ş

C F1(x, y)dx + F2(x, y)dy with

F1(x, y) =
a

1 + x3 F2(x, y) = 2xy2 + y2 BF2

Bx
´ BF1

By
= 2y2

As C is BR with
R =

 

(x, y)
ˇ

ˇ x2 + y2 ď 1
(

Green’s theorem (Theorem 4.3.2 in the CLP-4 text) gives
ż

C

a

1 + x3 dx +
(
2xy2 + y2)dy =

ż

C
F1(x, y)dx + F2(x, y)dy =

ĳ

R

(BF2

Bx
´ BF1

By

)
dxdy

= 2
ĳ

R

y2 dxdy
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Switching to polar coordinates

ż

C

a

1 + x3 dx +
(
2xy2 + y2)dy = 2

ż 2π

0
dθ

ż 1

0
dr r

(
r sin θ

)2

= 2

[
ż 2π

0
dθ sin2 θ

] [
ż 1

0
dr r3

]
= 2 π

1
4
=

π

2

To do the θ integral, we have used

ż 2π

0
sin2 θ dθ =

ż 2π

0

(1´ cos(2θ)

2

)
dθ =

[θ ´ sin(2θ)/2
2

]2π

0
= π

For an efficient, sneaky, way to evaluate
ş2π

0 sin2 θ dθ, see Example 2.4.4 in the CLP-4 text.

(b) It is again natural to use Green’s theorem. But Green’s theorem must be applied to a
curve that is closed, so that it is the boundary of a region in R2. The given curve C is not
closed. But it is part of the boundary of

R =
 

(x, y)
ˇ

ˇ x2 + y2 ď 1, x ě 0
(

Here is a sketch of R.

x

y

R

C

L

(0, 1)

(0,−1)
x2 + y2 = 1

The boundary of R consists of two parts — C on the right and the line segment L from
(0, 1) to (0,´1) on the left. Note that F = F1 ı̂ıı + F2 ̂ is well-defined on all of R and that we
still have, from part (a),

BF2

Bx
´ BF1

By
= 2y2
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on all of R. So, by Green’s theorem (Theorem 4.3.2 in the CLP-4 text),

ż

C

a

1 + x3 dx +
(
2xy2 + y2)dy =

ĳ

R

(BF2

Bx
´ BF2

By

)
dxdy´

ż

L
F ¨ dr

=

ĳ

x2+y2ď1
xě0

2y2 dxdy +

ż

´L
F2 dy

=

ĳ

x2+y2ď1

y2 dxdy +

ż 1

´1
y2 dy

by symmetry for the first integral and
since x = 0 and dx = 0 in the second integral

=
π

4
+

2
3

In the second line, we used the notation ´L for the line segment from (0,´1) to (0, 1).

S-18: First, here is a sketch of the curve C.

x

y

x = cos y

C

We’ll evaluate this integral in three different ways.

(1) Direct evaluation: To evaluate the integral directly, we’ll parametrize C using y as the
parameter. That is, we’ll make y(t) = t:

r(t) = x(t) ı̂ıı + y(t) ̂ = cos t ı̂ıı + t ̂ ´ π

2
ď t ď π

2
r1(t) = x1(t) ı̂ıı + y1(t) ̂ = ´ sin t ı̂ıı + ̂
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So the integral is

ż

C
(x2 + yex)dx + (x cos y + ex)dy

=

ż π/2

´π/2

![
x(t)2 + y(t)ex(t)]dx

dt
(t) +

[
x(t) cos(y(t)) + ex(t)]dy

dt
(t)

)

dt

=

ż π/2

´π/2

!

´ [ cos2 t + tecos t] sin t +
[

cos2 t + ecos t])dt

=

ż π/2

´π/2

!

´ cos2 t sin t + cos2 t´ tecos t sin t + ecos t
)

dt

=

ż π/2

´π/2

!

cos2 t +
d
dt

[cos3 t
3

+ tecos t
])

dt

=

ż π/2

´π/2

!cos(2t) + 1
2

+
d
dt

[cos3 t
3

+ tecos t
])

dt

=
[sin(2t)

4
+

t
2
+

cos3 t
3

+ tecos t
]π/2

´π/2

=
3π

2

For an efficient, sneaky, way to evaluate
şπ/2
´π/2 cos2 t dt see Example 2.4.4 in the CLP-4

text.

(2) Green’s (or Stokes’) theorem: The curve C is not closed so we cannot apply Green’s
theorem directly. However the boundary of the region

R =
 

(x, y)
ˇ

ˇ 0 ď x ď cos y, ´π/2 ď y ď π/2
(

(sketched below) consists of two parts, one of which is C. The other is the line L from(
0, π/2

)
to
(
0,´π/2

)
.

x

y

x = cos y

C

L
R
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So Green’s theorem gives

ż

C
(x2 + yex)dx + (x cos y + ex)dy

=

ĳ

R

! B
Bx

(x cos y + ex)´ B
By

(x2 + yex)
)

dxdy´
ż

L
(x2 + yex)dx + (x cos y + ex)dy

=

ĳ

R

cos y dxdy´
ż

L
dy since x = 0 and dx = 0 on L

=

ż π/2

´π/2
dy

ż cos y

0
dx cos y´

ż ´π/2

π/2
dy

=

ż π/2

´π/2
dy cos2 y + π

=

ż π/2

´π/2

cos(2y) + 1
2

dy + π

=
[sin(2y)

4
+

y
2

]π/2

´π/2
+ π

=
3π

2

(3) (Sort of) conservative fields: The given integral is
ş

C F ¨ dr with
F = (x2 + yex) ı̂ıı + (x cos y + ex) ̂. The curl of this field is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x2 + yex x cos y + ex 0


 = cos y k̂

So F violates our screening test and consequently is not conservative. But it violates
the screening test only because of the term x cos y ̂. This suggests that we split up

F = G + H with G = (x2 + yex) ı̂ıı + ex ̂, H = x cos y ̂

Then G is conservative with potential g = x3

3 + yex and H is pretty simple, so that it is
not hard to evaluate

ş

C H ¨ dr directly. Using the parametrization r(t) = cos t ı̂ıı + t ̂,
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´π
2 ď t ď π

2 as above,
ż

C
F ¨ dr =

ż

C
G ¨ dr +

ż

C
H ¨ dr

=

ż

C
∇∇∇g ¨ dr +

ż

C
H ¨ dr

= g
(
r(π/2)

)´ g
(
r(´π/2)

)
+

ż π/2

´π/2
x(t) cos(y(t))

dy
dt

(t) dt

= g
(
0, π/2

)´ g
(
0,´π/2

)
+

ż π/2

´π/2
cos2 t dt

=
π

2
´
(
´ π

2

)
+

ż π/2

´π/2

cos(2t) + 1
2

dt

= π +
[sin(2t)

4
+

t
2

]π/2

´π/2

=
3π

2

S-19: Call the region enclosed by the curve R. By Green’s theorem, Theorem 4.3.2 in the
CLP-4 text,

1
2

¿

C

x dy´ y dx =
1
2

ĳ

R

( B
Bx

x´ B
By

(´y)
)

dxdy =
1
2

ĳ

R

2 dxdy = A

as desired. The curve x2/3 + y2/3 = 1 may be parametrized in the counterclockwise
orientation by x(θ) = cos3 θ, y(θ) = sin3 θ, 0 ď θ ď 2π. Then

A =
1
2

¿

C

x dy´ y dx

=
1
2

ż 2π

0

(
x(θ)y1(θ)´ y(θ)x1(θ)

)
dθ =

1
2

ż 2π

0

(
3 cos4 θ sin2 θ + 3 sin4 θ cos2 θ

)
dθ

=
3
2

ż 2π

0
sin2 θ cos2 θ dθ =

3
8

ż 2π

0
sin2(2θ) dθ

=
3

16

ż 2π

0

(
1´ cos(4θ)

)
dθ =

3
16

[
θ ´ 1

4
sin(4θ)

]2π

0
=

3π

8

S-20: If we use D to denote the disk inside the circle C then we want
¿

C

F ¨ dr´ A
¿

C

G ¨ dr =
¿

C

(F´ AG) ¨ dr =
ĳ

D

[ B
Bx

(F´ AG)2 ´ B
By

(F´ AG)1

]
dxdy

to vanish for all disks D. We used Green’s theorem, which is Theorem 4.3.2 in the CLP-4
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text, in the last step. This is the case if and only if

B
Bx

(F´ AG)2 =
B
By

(F´ AG)1

ðñ B
Bx

[(x + y)´ A(2x´ 3y)] =
B
By

[(x + 3y)´ A(x + y)]

ðñ 1´ 2A = 3´ A
ðñ A = ´2

S-21: (a) Parametrize the circle r(θ) = (cos θ, sin θ). Then

F
(
r(θ)

)
= sin3 θ ı̂ıı´ cos θ sin2 θ ̂

dr
dθ

(θ) = ´ sin θ ı̂ıı + cos θ ̂

F
(
r(θ)

) ¨ dr
dθ

(θ) = ´ sin4 θ ´ cos2 θ sin2 θ = ´ sin2 θ
¿

C

F ¨ dr =
ż 2π

0
F
(
r(θ)

) ¨ dr
dθ

(θ) dθ = ´
ż 2π

0
sin2 θ dθ = ´

ż 2π

0

1´ cos(2θ)

2
dθ

= ´
[θ

2
´ sin(2θ)

4

]2π

0
= ´π

For an efficient, sneaky, way to evaluate
ş2π

0 sin2 θ dθ see Example 2.4.4 in the CLP-4 text.

(b) Denote by W the washer shaped region between the circle x2 + y2 = 1 and the ellipse
x2

16 +
y2

25 = 1. It is sketched below. By Green’s theorem
¿

C0

F ¨ dr´
¿

C

F ¨ dr =
ĳ

W

[ B
Bx

F2 ´ B
By

F1

]
dxdy

For the specified F

B
Bx

F2 ´ B
By

F1 = ´ BBx
xy2

(x2 + y2)2 ´
B
By

y3

(x2 + y2)2

= ´ y2

(x2 + y2)2 + 2
xy2(2x)

(x2 + y2)3 ´
3y2

(x2 + y2)2 + 2
y3(2y)

(x2 + y2)3

=
´y2(x2 + y2) + 4x2y2 ´ 3y2(x2 + y2) + 4y4

(x2 + y2)3

= 0

Consequently
¿

C0

F ¨ dr´
¿

C

F ¨ dr = 0 ùñ
¿

C0

F ¨ dr =
¿

C

F ¨ dr = ´π
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C C0

W

S-22: Observe that

BF2

Bx
´ BF1

By
=
B
Bx

( x
x2 + y2

)
´ BBy

( ´y
x2 + y2

)

=
(x2 + y2)´ x(2x)

(x2 + y2)2 +
(x2 + y2)´ y(2y)

(x2 + y2)2 = 0

except at (0, 0), where F is not defined. Hence by Green’s theorem (Theorem 4.3.2 in the
CLP-4 text),

ű

C F ¨ dr = 0 for any closed curve that does not contain (0, 0) in its interior. In
particular,

ű

C1
F ¨ dr = 0. On the other hand, (0, 0) is contained in the interior of C2, so we

cannot use Green’s theorem to conclude that
ű

C2
F ¨ dr = 0.

Let C3 be the circle of radius one centred on (0, 0) and denote by W the washer shaped
region between the circle C2 and the circle C3. It is sketched below.

C3 C2
W

By Green’s theorem (Theorem 4.3.2 in the CLP-4 text),
¿

C2

F ¨ dr´
¿

C3

F ¨ dr =
ĳ

W

[ B
Bx

F2 ´ B
By

F1

]
dxdy = 0

So
ű

C2
F ¨ dr =

ű

C3
F ¨ dr. Parameterize C3 by x = cos θ, y = sin θ. Then

r(θ) = cos θ ı̂ıı + sin θ ̂ 0 ď θ ď 2π

r1(θ) = ´ sin θ ı̂ıı + cos θ ̂

F
(
r(θ)

)
= ´ sin θ ı̂ıı + cos θ ̂

F
(
r(θ)

) ¨ r1(θ) = 1
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so that
¿

C2

F ¨ dr =
¿

C3

F ¨ dr =
ż 2π

0
dθ 1 = 2π

S-23: (a) Let C1 be the line segment from (0, 1) to (0, 0), C2 be the line segment from (0, 0)
to (1, 0) and C3 be the curve y = 1´ x2 from (1, 0) to (0, 1).

x

y y = 1− x2

C1

C2

C3

Then
ż

C1

x ds =
ż

C1

0 ds = 0

ż

C2

x ds =
ż 1

0
x dx =

1
2

On C3, y = 1´ x2 so that dy
dx = ´2x and

ds =
b

dx2 + dy2 =

c

1 +
(dy

dx

)2
dx =

a

1 + 4x2 dx

and
ż

C3

x ds =
ż 1

0
x
a

1 + 4x2 dx

=
[ 1

12
(1 + 4x2)3/2

]1

0
=

1
12
[
53/2 ´ 1

]

All together
ż

C
x ds =

1
2
+

1
12
[
53/2 ´ 1

] « 1.3484

(b) By either Stokes’ theorem or Green’s theorem

ż

C
F ¨ dr =

ĳ

R

[ B
Bx
(
x2 + cos(y2)

)´ B
By
(

sin(x2)´ xy
)]

dxdy =

ĳ

R

3x dxdy

= 3
ż 1

0
dx

ż 1´x2

0
dy x = 3

ż 1

0
dx (1´ x2)x = 3

[1
2
´ 1

4

]
=

3
4
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S-24: (a) If (x, y, z) is on the curve, it must obey both z = x + y and z = x2 + y2 and hence
it must also obey x2 + y2 = x + y or (x´ 1/2)2 + (y´ 1/2)2 = 1/2. That’s a circle. We can
parametrize the curve by

x(θ) =
1
2
+

1?
2

cos θ

y(θ) =
1
2
+

1?
2

sin θ

z(θ) = x + y = 1 +
1?
2

[
cos θ + sin θ

]

with 0 ď θ ă 2π. As θ runs from 0 to 2π,
(
x(θ), y(θ)

)
runs once around the circle without

crossing itself so that
(
x(θ), y(θ), z(θ)

)
runs once around the curve without crossing

itself. As
(
x(2π), y(2π), z(2π)

)
=
(

x(0), y(0), z(0)
)
, C is a simple closed curve.

(b) (i) The vector field F = x2 ı̂ıı + y2 ̂ + 3ez k̂ is conservative (with potential
1
3 x3 + 1

3 y3 + 3ez). So
ű

C F ¨ dr = 0.

(b) (ii) Note that the question did not specify the orientation of C. It should have. We’ll
stick with the most commonly used orientation — counterclockwise when viewed from
high on the z-axis. The vector field G = 3ez k̂ is conservative (with potential 3ez). So
ű

C G ¨ dr = 0 and, using the parametrization

r(θ) =
[1

2
+

1?
2

cos θ
]
ı̂ıı +
[1

2
+

1?
2

sin θ
]
̂ +
[
1 +

1?
2

sin θ +
1?
2

cos θ
]
k̂

r1(θ) = ´ 1?
2

sin θ ı̂ıı +
1?
2

cos θ ̂ +
[ 1?

2
cos θ ´ 1?

2
sin θ

]
k̂

of part (a), we have
¿

C

F ¨ dr =
¿

C

(F´G) ¨ dr

=

ż 2π

0

[
y(θ)2x1(θ) + x(θ)2y1(θ)

]
dθ

=

ż 2π

0

!

´
[1

2
+

1?
2

sin θ
]2 1?

2
sin θ +

[1
2
+

1?
2

cos θ
]2 1?

2
cos θ

)

dθ

Because the integral of any odd power of sin θ or cos θ over 0 ď θ ď 2π is zero (see
Example 4.4.6 in the text),

¿

c

F ¨ dr =
ż 2π

0

!

´ 1
2

sin2 θ +
1
2

cos2 θ
)

dθ

= 0

since (see Example 2.4.4 in the text)
ż 2π

0
cos2 θ dθ =

ż 2π

0
sin2 θ dθ = π
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S-25: By Green’s Theorem
¿

C

(y3 ´ y)dx´ 2x3 dy =

ĳ

R

[ B
Bx

(´2x3)´ B
By

(y3 ´ y)
]

dx dy =

ĳ

R

[
1´ 6x2 ´ 3y2

]
dx dy

where R is the region in the xy-plane whose boundary is C. Observe that the integrand
1´ 6x2 ´ 3y2 is positive in the elliptical region 6x2 + 3y2 ď 1 and negative outside of it.
To maximize the integral

ť

R
[
1´ 6x2 ´ 3y2] dx dy we should choose R to contain all

points (x, y) with the integrand 1´ 6x2 ´ 3y2 ě 0 and to exclude all points (x, y) with the
integrand 1´ 6x2 ´ 3y2 ă 0. So we choose

R =
 

(x, y)
ˇ

ˇ 6x2 + 3y2 ď 1
(

The corresponding C is 6x2 + 3y2 = 1.

Solutions to Exercises 4.4 — Jump to TABLE OF CONTENTS

S-1: One approach is to first consider

S

∂S

The correct normal to this surface is sketched in

S

n̂

∂S

It is correct because

• if you walk along BS in the direction of the arrow on BS,
• with the vector from your feet to your head having direction n̂
• then S is on your left hand side.

Now pretend that the surface S is made of rubber and that n̂ is glued to S. We can push
on this S to deform it to the S of part (a) or to the S of part (b). This gives the solutions to
parts (a) and (b).

(a)

S

n̂

∂S

(b)

Sn̂

∂S

To deal with part (c), we can first rotate the flat disk that we considered above to get
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S

n̂

∂S

We can push on this S to deform it to the S of part (c). This gives the solution to part (c).

(c)

S

n̂
∂S

S-2: Think of the xy-plane as being the plane z = 0 in R3.

z

y

x

C

n̂

R

We are going to apply Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text) with S being the
given region R in the xy-plane and with F(x, y, z) = F1(x, y) ı̂ıı + F2(x, y) ̂. Then

˝ the unit normal vector to S specified in Stokes theorem is k̂ (if you walk along
BS = C in the direction of the arrow on C with the vector from your feet to your
head having direction k̂ then S = R is on your left hand side) and

˝ dS = dx dy and
˝ the curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

F1(x, y) F2(x, y) 0


 =

(BF2

Bx
´ BF1

By

)
k̂

So Stokes’ theorem gives

¿

C

[
F1(x, y)dx + F2(x, y)dy

]
=

¿

BS

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

R

(BF2

Bx
´ BF1

By

)
dxdy
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S-3: We are to show that
ű

C[φ∇∇∇ψ + ψ∇∇∇φ] ¨ dr = 0. Suppose that C = BS. Then, by Stokes’
theorem

¿

C

[φ∇∇∇ψ + ψ∇∇∇φ] ¨ dr =
ĳ

S

∇∇∇ˆ [φ∇∇∇ψ + ψ∇∇∇φ] ¨ n̂ dS

We will show below that∇∇∇ˆ [φ∇∇∇ψ + ψ∇∇∇φ] = 0. This will imply that
ű

C[φ∇∇∇ψ + ψ∇∇∇φ] ¨ dr = 0. One way to see that∇∇∇ˆ [φ∇∇∇ψ + ψ∇∇∇φ] = 0 is

∇∇∇ˆ [φ∇∇∇ψ + ψ∇∇∇φ] =∇∇∇ˆ [∇∇∇(φψ)] (by part (c) of Theorem 4.1.3 in the CLP-4 text)
= 0 (by part (b) of Theorem 4.1.7 in the CLP-4 text)

Another way to see that∇∇∇ˆ [φ∇∇∇ψ + ψ∇∇∇φ] = 0 is

∇∇∇ˆ [φ∇∇∇ψ + ψ∇∇∇φ] =∇∇∇φˆ∇∇∇ψ + φ∇∇∇ˆ (∇∇∇ψ) +∇∇∇ψˆ∇∇∇φ + ψ∇∇∇ˆ (∇∇∇φ)

=∇∇∇φˆ∇∇∇ψ +∇∇∇ψˆ∇∇∇φ since φ∇∇∇ˆ (∇∇∇ψ) = ψ∇∇∇ˆ (∇∇∇φ) = 0
= 0

S-4: (a) Observe that x(t) = cos t and y(t) = sin t obey x(t)2 + y(t)2 = 1. Then
z(t) = y(t)2 = sin2 t. So we may parametrize the curve by r(t) = (cos t, sin t, sin2 t) with
0 ď t ď 2π. Then

r1(t) = (´ sin t , cos t , 2 sin t cos t)

F
(
r(t)

)
=
(

cos2 t´ sin t , sin2 t + cos t , 1
)

F
(
r(t)

) ¨ r1(t) = ´ sin t cos2 t + sin2 t + sin2 t cos t + cos2 t + 2 sin t cos t

= 1 +
1
3

d
dt

[cos3 t + sin3 t] + sin(2t)
¿

C

F ¨ dr =
ż 2π

0

"

1 +
1
3

d
dt

[cos3 t + sin3 t] + sin(2t)
*

dt

=

[
t +

1
3
[cos3 t + sin3 t]´ 1

2
cos(2t)

]2π

0

= 2π

(b) Let S be the surface z = f (x, y) with f (x, y) = y2 and x2 + y2 ď 1. Since C is oriented
counter clockwise when viewed from high on the z-axis, Stokes’ theorem requires that
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we use the normal n̂ to S with positive z component. Hence

n̂ dS =
[
´ B f
Bx

ı̂ıı´ B f
By

̂ + k̂
]

dx dy =
[
´ 2y ̂ + k̂

]
dx dy

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x2 ´ y y2 + x 1


 = 2k̂

∇∇∇ˆ F ¨ n̂ dS = 2 dx dy
¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS = 2
ĳ

x2+y2ď1

dx dy

= 2π

S-5: We apply Stokes’ theorem. First,

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

yex x + ex z2


 =

(
1 + ex ´ ex) k̂ = k̂

Note that r(t) = x(t) ı̂ıı + y(t) ̂ + z(t) k̂ obeys x(t) + y(t) + z(t) = 3, for every t, and that
x(t) ı̂ıı + y(t) ̂ = (1 + cos t) ı̂ıı + (1 + sin t) ̂ runs counterclockwise around the circle of
radius 1 centered on (1, 1). So we choose S to be the part of the plane
G(x, y, z) = x + y + z = 3 with (x´ 1)2 + (y´ 1)2 ď 1. Then, by Stokes’ Theorem,

¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

S

k̂ ¨ n̂ dS

with
n̂ dS = ˘ ∇∇∇G

∇∇∇G ¨ k̂ dxdy = ˘(ı̂ıı + ̂ + k̂
)

dxdy

As (1 + cos t) ı̂ıı + (1 + sin t) ̂ runs counterclockwise around the circle
(x´ 1)2 + (y´ 1)2 ď 1, Stokes’ theorem specifies the plus sign and

¿

C

F ¨ dr =
ĳ

(x´1)2+(y´1)2ď1

dx dy = π

S-6: The boundary of S is

BS =
 

(x, y, z)
ˇ

ˇ z = 0, x2 + y2 = 4
(

and can be parametrized

r(θ) = 2 cos θ ı̂ıı + 2 sin θ ̂ 0 ď θ ď 2π
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V S

n̂

∂S

So, by Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text)
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¿

BS

F ¨ dr

=

ż 2π

0
(

F(r(θ))
hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

´2 sin θ ı̂ıı + 2 cos θ ̂´ 2 cos θ k̂) ¨ (
r1(θ)

hkkkkkkkkkkkikkkkkkkkkkkj

´2 sin θ ı̂ıı + 2 cos θ ̂) dθ

= 4
ż 2π

0
dθ

= 8π

S-7: The boundary of S is the circle x2 + y2 = 4, z = 0. Let C be this circle, oriented by the
parametrization x(t) = 2 cos t, y(t) = 2 sin t, z(t) = 0. By Stokes’ theorem

ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ż

C
F ¨ dr =

ż 2π

0
F(2 cos t, 2 sin t, 0) ¨ dr

dt
(t) dt

=

ż 2π

0

[
0 ı̂ıı + 2 cos t(3 + 2 sin t) ̂ + 2 sin t k̂

] ¨ [´ 2 sin t ı̂ıı + 2 cos t̂
]

dt

=

ż 2π

0

[
12 cos2 t + 8 cos2 t sin t

]
dt

=

ż 2π

0

[
6 + 6 cos(2t) + 8 cos2 t sin t

]
dt

=
[
6t + 3 sin(2t)´ 8

3
cos3 t

]2π

0
= 12π

For an efficient, sneaky, way to evaluate
ş2π

0 cos2 t dt, see Example 2.4.4 in the CLP-4 text.

S-8: Let S be the portion of the paraboloid z = f (x, y) = 4´ x2 ´ y2 with
x2 + (y´ 1)2 ď 1 and let n̂ be the upward normal to S. For this surface

n̂ dS =
(´ fx(x, y) ı̂ıı´ fy(x, y) ̂ + k̂

)
dxdy =

(
2x ı̂ıı + 2y ̂ + k̂

)
dxdy

by (3.3.2) in the CLP-4 text. As (x, y, z) runs over S, (x, y) runs over the circular disk

D =
 

(x, y)
ˇ

ˇ x2 + (y´ 1)2 ď 1
(
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For the given vector field

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

xz x yz




= z ı̂ıı + x ̂ + k̂

so that, by Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text),
¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS

=

ĳ

D

[
2x

z= f (x,y)
hkkkkkkikkkkkkj

(4´ x2 ´ y2) +2xy + 1
]

dxdy

By oddness under x Ñ ´x, all terms integrate to zero except for the last. So
¿

C

F ¨ dr =
ĳ

D

dxdy = Area(D) = π

S-9: The surface

S =
 

(x, y, z)
ˇ

ˇ ´ 1 ď x ď 1, ´1 ď y ď 1, z ě 0, z = (1´ x2)(1´ y2)
(

=
 

(x, y, z)
ˇ

ˇ ´ 1 ď x ď 1, ´1 ď y ď 1, z = (1´ x2)(1´ y2)
(

Note that when x = 1 or x = ´1 or y = 1 or y = ´1, we have z = (1´ x2)(1´ y2) = 0. So
the boundary of S, call it C, is the boundary of the square ´1 ď x, y ď 1, z = 0, oriented
counterclockwise. Here is a sketch of C.

(−1,−1) (1,−1)

(−1, 1) (1, 1)

dx=0
x=1

dx=0
x=−1

dy=0
y=−1

dy=0
y=1

Apply Stokes’ theorem. Observing that z = 0 on C so that F = ´y ı̂ıı + x3 ̂,
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¿

C

F ¨ dr =
¿

C

[´y ı̂ıı + x3 ̂] ¨ dr

=

ż 1

´1
´(´1)dx

looooooomooooooon

y=´1 side

+

ż 1

´1
(1)3 dy

looooomooooon

x=1 side

+

ż ´1

1
´(1)dx

loooooomoooooon

y=1 side

+

ż ´1

1
(´1)3 dy

loooooomoooooon

x=´1 side

= 8
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S-10: We shall apply Stokes’ Theorem. The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

ex2 ´ yz sin y´ yz xz + 2y


 = (2 + y) ı̂ıı´ (z + y) ̂ + (0 + z) k̂

The curve C is a triangle. All three vertices of the triangle obey x + y + z = 1. So the
triangle is the boundary of the surface S =

 

(x, y, z)
ˇ

ˇ x ě 0, y ě 0, z = 1´ x´ y ě 0
(

.

n̂

y

z

x

The equation of the surface is z = f (x, y) = 1´ x´ y. So, by (3.3.2) in the CLP-4 text,

n̂ dS =
(´ fx ı̂ıı´ fy ̂ + k̂

)
dx dy

= (ı̂ıı + ̂ + k̂)dx dy

Here n̂ is the upward pointing unit normal. The set of points (x, y) for which there is a
corresponding (x, y, z) in S is T =

 

(x, y)
ˇ

ˇ x ě 0, y ě 0, x + y ď 1
(

, which is a triangle
of area 1

2 . Since∇∇∇ˆ F ¨ n̂ dS = [(2+ y)ı̂ıı´ (z + y)̂ + (0+ z)k̂] ¨ (ı̂ıı + ̂ + k̂)dx dy = 2 dx dy,
¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS

=

ĳ

T

2 dx dy = 2 Area(T) = 1

S-11: Stokes’ theorem, which is Theorem 4.4.1 in the CLP-4 text, says that
ű

C F ¨ dr =
ť

S∇ˆ F ¨ n̂ dS for any surface S whose boundary is C. For the given vector
field

∇ˆ F(x, y, z) = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

´z x y




= ı̂ıı´ ̂ + k̂

Choose

S =
 

(x, y, z)
ˇ

ˇ z = y, x2

4 + y2

2 + z2

2 ď 1
(

=
 

(x, y, z)
ˇ

ˇ z = y, x2

4 + y2 ď 1
(

to be the part of the plane z = y bounded by the ellipsoid.
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z

y

x

(0, 1, 1)

(2, 0, 0)

y = z
x2

4
+ y2

2
+ z2

2
= 1

As S is part of the plane z = f (x, y) = y, (3.3.2) of the CLP-4 text, gives that

n̂ dS = ˘(´ fx , ´ fy , 1
)
dxdy

= ˘(0 , ´1 , 1)dxdy

As C has the standard orientation (counter-clockwise when viewed from high on the
z-axis), we want n̂ to have a positive z-component. So n̂ dS = (0 , ´1 , 1)dxdy. From the
second form of S given above, we see that as (x, y, z) runs over S, (x, y) runs over

D =
 

(x, y)
ˇ

ˇ

x2

4 + y2 ď 1
(

Consequently, Stokes’ theorem gives that

¿

C

F ¨ dr =
ĳ

D

∇ˆF
hkkkkikkkkj

(1,´1, 1) ¨
n̂ dS

hkkkkkkkkkikkkkkkkkkj

(0 , ´1 , 1)dxdy

= 2
ĳ

D

dxdy = 2 Area(D)

The ellipse D, that is x2

4 + y2 ď 1, has semi-axes a = 2 and b = 1 and hence area
πab = 2π. Finally

¿

C

F ¨ dr = 2 Area(D) = 4π

S-12: Note that the curve of part (a) is a simple closed curve that lies in the plane
x + y + z = 2 and is oriented in a counterclockwise direction as observed from the
positive x-axis. The curve of part (a) encloses a triangle. Two of the sides of the triangle
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x

y

z

L1

L2
L3

(2,0,0)

(0,2,0)

(0,0,2)

are (0, 2, 0)´ (2, 0, 0) = (´2, 2, 0) and (0, 0, 2)´ (0, 2, 0) = (0,´2, 2) so the area of the
triangle is

1
2

ˇ

ˇ(´2, 2, 0)ˆ (0,´2, 2)
ˇ

ˇ =
1
2

det




ı̂ıı ̂ k̂
´2 2 0
0 ´2 2


 =

1
2

ˇ

ˇ(4, 4, 4)
ˇ

ˇ = 2
?

3

So let’s do part (b) first.

(b) We are not told explicitly what C2 is, so we certainly can’t do a direct evaluation.
Instead, let’s use Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text). The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

z2 x2 y2




= 2y ı̂ıı + 2z ̂ + 2x k̂

The upward pointing unit normal to E is n̂ = ı̂ıı+̂+k̂
?

3
. So, by Stokes’ theorem,

I2 =

ż

C2

F ¨ dr =
ĳ

R

∇∇∇ˆ F ¨ n̂ dS =

ĳ

R

(
2y ı̂ıı + 2z ̂ + 2x k̂

) ¨ ı̂ıı + ̂ + k̂?
3

dS

=
2?
3

ĳ

R

( =2 on R
hkkkkikkkkj

y + z + x
)

dS =
4?
3

Area(R) = 4
?

3

(a) Denote by T the triangle enclosed by C1. By the computation that we have just done
in part (b)

I1 =

ż

C1

F ¨ dr =
4?
3

Area(T) = 8

S-13: (a) Observe that

˝ the curve C1 is one quarter of a circle in the xy-plane, centred on the origin, of
radius 2, starting at (2, 0, 0) and ending at (0, 2, 0) and
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˝ the curve C2 is one quarter of a circle in the yz-plane, centred on the origin, of
radius 2, starting at (0, 2, 0) and ending at (0, 0, 2) and

˝ the curve C3 is one quarter of a circle in the xz-plane, centred on the origin, of
radius 2, starting at (0, 0, 2) and ending at (2, 0, 0).

Here is a sketch.

x

y

z

C1

C2
C3

(2,0,0)

(0,2,0)

(0,0,2)

(b) C lies completely on the sphere x2 + y2 + z2 = 4. So it is natural to choose

S =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 = 4, x ě 0, y ě 0, z ě 0
(

and to parametrize S using spherical coordinates

r(θ, ϕ) = 2 cos θ sin ϕ ı̂ıı + 2 sin θ sin ϕ ̂ + 2 cos ϕ k̂, 0 ď θ ď π

2
, 0 ď ϕ ď π

2

Since

Br
Bθ

= ´2 sin θ sin ϕ ı̂ıı + 2 cos θ sin ϕ ̂

Br
Bϕ

= 2 cos θ cos ϕ ı̂ıı + 2 sin θ cos ϕ ̂´ 2 sin ϕ k̂

so that

Br
Bθ
ˆ Br
Bϕ

= det




ı̂ıı ̂ k̂
´2 sin θ sin ϕ 2 cos θ sin ϕ 0
2 cos θ cos ϕ 2 sin θ cos ϕ ´2 sin ϕ




= ´4 cos θ sin2 ϕ ı̂ıı´ 4 sin θ sin2 ϕ ̂´ 4 sin ϕ cos ϕ k̂

(3.3.1) in the CLP-4 text gives

n̂ dS = ˘Br
Bθ
ˆ Br
Bϕ

dθdϕ = ¯4
(

cos θ sin ϕ ı̂ıı + sin θ sin ϕ ̂ + cos ϕ k̂
)

sin ϕ dθdϕ

We want n̂ to point outward, for compatibility with the orientation of C. So we choose
the + sign.

n̂ dS = 4
(

cos θ sin ϕ ı̂ıı + sin θ sin ϕ ̂ + cos ϕ k̂
)

sin ϕ dθdϕ = 2 r(θ, ϕ) sin ϕ dθdϕ
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(c) The vector field F looks too complicated for a direct evaluation of the line integral. So,
in preparation for an application of Stokes’ theorem, we compute

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

y + sin(x2) z´ 3x + ln(1 + y2) y + ez2




= ´4 k̂

So, by Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text),
ż

C
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS

=

ż π/2

0
dϕ

ż π/2

0
dθ
(´ 4k̂

) ¨ ( cos θ sin ϕ ı̂ıı + sin θ sin ϕ ̂ + cos ϕ k̂
)

4 sin ϕ

= ´16
ż π/2

0
dϕ

ż π/2

0
dθ cos ϕ sin ϕ = 16

π

2
cos2 ϕ

2

ˇ

ˇ

ˇ

ˇ

π/2

0

= ´4π

S-14: (a) The boundary, BS1, of S1 as specified in Stokes’ theorem (Theorem 4.4.1 in the
CLP-4 text) is the circle

a

x2 + y2 = 4, z = 4 oriented clockwise when viewed from high
on the z-axis. That is, we can parametrize BS1 by

r(t) = 4 cos t ı̂ıı´ 4 sin t ̂ + 4 k̂, 0 ď t ď 2π

So

F
(
r(t)

) ¨ dr =
(
16 sin t , 16 cos t , ´16 sin t cos t cos(´16 sin t)

) ¨ (´ 4 sin t , ´4 cos t , 0
)

dt
= ´64 dt

and, by Stokes’ theorem,

ĳ

S1

∇∇∇ˆ F ¨ n̂ dS =

¿

BS1

F
(
r(t)

) ¨ dr = ´64
ż 2π

0
dt = ´128π

S1
n̂

∂S1

S2

n̂

∂S2a

∂S2b
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(b) The boundary, BS2, of S2 consists of two parts, a circle in the plane z = 4 and a circle
in the plane z = 1. We’ll call the first part BS2a. It is the same as BS1. We’ll call the second
part BS2b. It is the circle

a

x2 + y2 = 1, z = 1 oriented counterclockwise when viewed from
high on the z-axis. We can parametrize it

r(t) = cos t ı̂ıı + sin t ̂ + k̂, 0 ď t ď 2π

So, on BS2b,

F
(
r(t)

) ¨ dr =
(´ sin t , cos t , sin t cos t cos(sin t)

) ¨ (´ sin t , cos t , 0
)

dt
= dt

and, by Stokes’ theorem,

ĳ

S2

∇∇∇ˆ F ¨ n̂ dS =

¿

BS2a

F
(
r(t)

) ¨ dr +
¿

BS2b

F
(
r(t)

) ¨ dr = ´128π +

ż 2π

0
dt

= ´126π

S-15: Denote by
S =

 

(x, y, z)
ˇ

ˇ z = x + 4, x2 + y2 ď 4
(

the part of the plane z = x + 4 that is contained in the cylinder x2 + y2 = 4. Orient S by
the downward pointing normal n̂ = 1?

2
(1, 0,´1). Then C is the boundary of S. The part

of C and S that are in the first octant are sketched below.
z

y

x

x2 + y2 = 4C

S

n̂

We may parametrize S by

r(x, y) = (x, y, x + 4) with x2 + y2 ď 4

So,

Br
Bx
ˆ Br
By

= det




ı̂ıı ̂ k̂
1 0 1
0 1 0


 =

(´ 1, 0, 1
)
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and, by (3.3.1) in the CLP-4 text,

n̂ dS = ´Br
Bx
ˆ Br
By

dxdy = (1, 0,´1)dxdy

We have chosen to “´” sign in n̂ dS = ˘ Br
Bx ˆ Br

By dxdy to give the downward pointing
normal. As the curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x3 + 2y sin(y) + z x + sin(z2)




= ´ı̂ıı´ ̂´ 2k̂

Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text) gives
¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

S

(´1,´1,´2) ¨ (1, 0,´1)dxdy =

ĳ

S

dxdy = 4π

S-16: (a) Note that all three vertices, (2, 0, 0), (0, 2, 0) and 0, 0, 2), lie in the plane
x + y + z = 2. So the entire path lies in that plane too. In part (b) we will need to

n̂

(2, 0, 0)

(0, 2, 0)

(0, 0, 2)

y

z

x
evaluate a line integral that clearly cannot be computed directly — we will need to use
Stokes’ theorem. So let’s use Stokes’s theorem in part (a) too. First, we find

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

z2 x2 y2


 = 2y ı̂ıı + 2z ̂ + 2x ı̂ıı

Let S be the triangular surface that is contained in the plane x + y + z = 2 and is
bounded by L1, L2 and L3. Orient S by the normal vector n̂ = 1?

3
(ı̂ıı + ̂ + k̂). Then,

∇∇∇ˆ F ¨ n̂ =
1?
3

(
2y ı̂ıı + 2z ̂ + 2x ı̂ıı

) ¨ (ı̂ıı + ̂ + k̂) =
2?
3
(x + y + z)

and, by Stokes’ theorem,
¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =
2?
3

ĳ

S

(x + y + z)dS =
4?
3

ĳ

S

dS =
4?
3

Area(S)
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The triangle S is half of the prallelogram with sides (0, 2, 0)´ (2, 0, 0) = (´2, 2, 0) and
(0, 0, 2)´ (2, 0, 0) = (´2, 0, 2). The area of the parallelogram is

ˇ

ˇ(´2, 2, 0)ˆ (´2, 0, 2)
ˇ

ˇ =
ˇ

ˇ(4, 4, 4)
ˇ

ˇ = 4
?

3

So
¿

C

F ¨ dr =
4?
3

2
?

3 = 8

(b) Let S̃ be the specified surface. Then, as in part (a),
¿

C

F ¨ dr =
ĳ

S̃

∇∇∇ˆ F ¨ n̂ dS =
2?
3

ĳ

S̃

(x + y + z)dS =
4?
3

ĳ

S̃

dS =
4?
3

Area(S̃)

= 4
?

3

S-17: Let’s try Stokes’ theorem with

F =

(
z +

1
1 + z

)
ı̂ıı + xz ̂ +

(
3xy´ x

(z + 1)2

)
k̂

The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

z + 1
1+z xz 3xy´ x

(z+1)2




= (3x´ x)ı̂ıı´
(

3y´ 1
(z + 1)2 ´ 1 +

1
(1 + z)2

)
̂ + z k̂

= 2x ı̂ıı + (1´ 3y) ̂ + z k̂

Write
S =

 

(x, y, z)
ˇ

ˇ z = f (x, y) = 1´ x2y, x2 + y2 ď 1
(

For S, with the upward pointing normal, by (3.3.2) of the CLP-4 text,

n̂ dS =
(´ fx , ´ fy , 1

)
dxdy

=
(
2xy , x2 , 1

)
dxdy

so that

∇∇∇ˆ F ¨ n̂ dS =
 

4x2y + (x2 ´ 3x2y) +

z
hkkkkikkkkj

(1´ x2y)
(

dxdy

and, by Stokes’ theorem,
ż

C
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

x2+y2ď1

 

4x2y + x2 ´ 3x2y + 1´ x2y
(

dxdy
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So
ż

C
F ¨ dr =

ĳ

x2+y2ď1

 

x2 + 1
(

dxdy = π +

ĳ

x2+y2ď1

x2 dxdy

To evaluate the final remaining integral, let’s switch to polar coordinates.
ĳ

x2+y2ď1

x2 dxdy =

ż 1

0
dr r

ż 2π

0
dθ
(
r cos θ)2

=

ż 1

0
dr r3

ż 2π

0
dθ cos2 θ

Since
ż 2π

0
cos2 θ dθ =

ż 2π

0

1 + cos(2θ)

2
dθ =

[
θ

2
+

sin(2θ)

4

]2π

0
= π

we finally have
ş1

0 dr r3 ş2π
0 dθ cos2 θ = π

4 and
ż

C
F ¨ dr = π +

π

4
=

5π

4

For an efficient, sneaky, way to evaluate
ş2π

0 cos2 θ dθ, see Example 2.4.4 in the CLP-4 text.

S-18: We are to evaluate a line integral around a curve C. We are told that C is the
boundary of a surface S that is contained in the plane x + y + z = 1, but we are not told
precisely what C is. So we are going to have to use Stokes’ theorem. The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

z2 x2 y2


 = 2y ı̂ıı + 2z ̂ + 2x k̂

and, by (3.3.3) of the CLP-4 text with G(x, y, z) = x + y + z,

dS =

ˇ

ˇ

ˇ

ˇ

∇∇∇G
∇∇∇G ¨ k̂

ˇ

ˇ

ˇ

ˇ

dxdy =
?

3 dxdy

n̂ dS = ˘ ∇∇∇G
∇∇∇G ¨ k̂dxdy = ˘(ı̂ıı + ̂ + k̂)dxdy = ˘ 1?

3

(
ı̂ıı + ̂ + k̂)dS

Because C is oriented in a clockwise direction as observed from the positive z-axis

z

y

x

C

n̂

S
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looking down at the plane, n̂ is to point downwards, so that

n̂ dS = ´ 1?
3

(
ı̂ıı + ̂ + k̂)dS

On S we have x + y + z = 1, so that Stokes’ theorem gives

¿

C

F ¨ dr =
ĳ

S

(∇∇∇ˆ F) ¨ n̂ dS =

ĳ

S

2(y ı̂ıı + z ̂ + x k̂) ¨
(
´ 1?

3

) (
ı̂ıı + ̂ + k̂)dS

= ´ 2?
3

ĳ

S

(y + z + x)dS = ´ 2?
3

ĳ

S

dS = ´ 10?
3

since S has area 5.

S-19: We are to evaluate the line integral of a complicated vector field around a relatively
complicated closed curve. That certainly suggests that we should not try to evaluate the
integral directly. To see if Stokes’ theorem looks promising, let’s compute the curl

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

´y + ex sin x y4 ?
z tan z


 = k̂

That’s suggestive. Next we need to find a surface whose boundary is C. First, here is a
sketch of C. We can choose the surface S to be the union of two flat parts:

(0, 0, 0)

(0, 1, 1)

(0, 1, 2)

(0, 2, 0)

(2, 2, 0)

T

Q

y

z

x

˝ the quadralateral Q in the yz-plane with vertices (0, 0, 0), (0, 1, 1), (0, 1, 2) and
(0, 2, 0) and

˝ the triangle T in the xy-plane with vertices (0, 0, 0), (0, 2, 0) and (2, 2, 0).

424



The normal to Q is ´ı̂ıı and the normal to T is ´k̂. Then Stokes’ theorem gives
ż

C
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS

=

ĳ

Q

k̂ ¨ (´ı̂ıı)dS +

ĳ

T

k̂ ¨ (´k̂)dS

= ´
ĳ

T

dS

= ´Area(T)

= ´1
2

base
hkkikkj

2

height
hkkikkj

2
= ´2

S-20: The integral looks messy. Let’s compute the curl of

F = (z + sin z) ı̂ıı + (x3 ´ x2y) ̂ + (x cos z´ y) k̂

to help gauge if Stokes’ theorem would be easier.

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

z + sin z x3 ´ x2y x cos z´ y


 = ´ı̂ıı + ̂ + (3x2 ´ 2xy) k̂

That’s a lot simpler than F. For the surface z = f (x, y) = xy2, with downward pointing
normal (since C is traversed clockwise)

n̂ dS = ´(´ fx,´ fy, 1
)

dxdy =
(
y2, 2xy,´1

)
dxdy

by (3.3.2) of the CLP-4 text, So, writing

S =
 

(x, y, z)
ˇ

ˇ z = xy2, x2 + y2 ď 1
(

D =
 

(x, y)
ˇ

ˇ x2 + y2 ď 1
(

Stoke’s theorem gives
ż

C
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

D

 ´ y2 + 2xy´ 3x2 + 2xy
(

dxdy

= ´
ĳ

x2+y2ď1

 

3x2 + y2 ´ 4xy
(

dxdy

To evaluate this integral, switch to polar coordinates.
ż

C
F ¨ dr = ´

ż 1

0
dr r

ż 2π

0
dθ

 

3r2 cos2 θ + r2 sin2 θ ´ 4r2 sin θ cos θ
(

= ´4π

ż 1

0
dr r3 = ´π
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since
ş2π

0 sin θ cos θ dθ = 1
2

ş2π
0 sin(2θ)dθ = 0 and

ş2π
0 sin2 θ dθ =

ş2π
0 cos2 θ dθ = π. (See

Example 2.4.4 in the CLP-4 text.)

S-21: Here is a sketch of the part of S in the first octant.

z

y

x

S

∂S

x2 + y2 + z2 = 2
z = 1

n̂

The boundary, BS, of S is the circle x2 + y2 = 1, z = 1, oriented counterclockwise when
viewed from above. It is parametrized by

r(θ) = cos θ ı̂ıı + sin θ ̂ + k̂ 0 ď θ ď 2π

So Stokes’ theorem gives
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¿

BS

F ¨ dr

=

ż 2π

0

(
F(r(t))

hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

´ sin2 θ ı̂ıı + cos3 θ ̂ + (mess)k̂
)
¨ (

r1(t)
hkkkkkkkkkikkkkkkkkkj

´ sin θ ı̂ıı + cos θ ̂
)

dθ

=

ż 2π

0

(
sin3 θ + cos4 θ

)
dθ

The integral of any odd power of sin θ or cos θ over 0 ď θ ď 2π is zero. (See Example
4.4.6 in the CLP-4 text.) In particular,

ş2π
0 sin3 θ dθ = 0. To integrate cos4 θ we use the trig

identity

cos2 θ =
cos(2θ) + 1

2

ùñ cos4 θ =
cos2(2θ) + 2 cos(2θ) + 1

4

=
1
4

cos(4θ) + 1
2

+
cos(2θ)

2
+

1
4

=
3
8
+

cos(4θ)

8
+

cos(2θ)

2

Finally
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ż 2π

0

(3
8
+

cos(4θ)

8
+

cos(2θ)

2

)
dθ =

3π

4
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S-22: We are to evaluate the line integral of a complicated vector field around a relatively
complicated closed curve. That certainly suggests that we should not try to evaluate the
integral directly. As we are to use Stokes’ theorem, let’s compute the curl

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x sin y ´y sin x (x´ y)z2


 = ´z2 ı̂ıı´ z2 ̂´ (y cos x + x cos y)k̂

Next we need to find a surface whose boundary is C. First, here is a sketch of C. We can

(π/2, 0, 0)

(π/2, 0, 1)

(0, 0, 1) (0, π/2, 1)

(0, π/2, 0)

Sx

Sy

y

z

x
choose the surface S to be the union of two flat parts:

˝ the rectangle Sx in the xz-plane with vertices (0, 0, 0), (π/2, 0, 0), (π/2, 0, 1) and
(0, 0, 1) and

˝ the rectangle Sy in the yz-plane with vertices (0, 0, 0), (0, 0, 1), (0, π/2, 1) and
(0, π/2, 0)

The normal to Sx is ´̂ and the normal to Sy is ´ı̂ıı. Then Stokes’ theorem gives

ż

C
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS

=

ĳ

Sx

∇∇∇ˆ F ¨ (´̂)dS +

ĳ

Sy

∇∇∇ˆ F ¨ (´ı̂ıı)dS

=

ż π/2

0
dx

ż 1

0
dz z2 +

ż π/2

0
dy

ż 1

0
dz z2

=

ż π/2

0
dx

1
3
+

ż π/2

0
dy

1
3

=
π

3

S-23: (a) Here is a sketch.
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(2, 0, 0)

(0, 0, 2)

(0, 3, 0)
Sx

Sy

y

z

x

(b) We are to evaluate the line integral of a complicated vector field around a relatively
complicated closed curve. That certainly suggests that we should not try to evaluate the
integral directly. Let’s try Stokes’ theorem. First, we compute the curl

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

2z
1+y + sin(x2) 3z

1+x + sin(y2) 5(x + 1)(y + 2)




=
(

5(x + 1)´ 3
1 + x

)
ı̂ıı´
(

5(y + 2)´ 2
1 + y

)
̂ +
(
´ 3z

(1 + x)2 +
2z

(1 + y)2

)
k̂

Next we need to find a surface S whose boundary is C. We can choose the surface S to be
the union of two flat parts:

˝ the triangle Sx in the xz-plane with vertices (0, 0, 0), (2, 0, 0), and (0, 0, 2) and
˝ the triangle Sy in the yz-plane with vertices (0, 0, 0), (0, 0, 2), and (0, 3, 0)

Note that

˝ The normal to Sx specified by Stokes’ theorem is ´̂. On Sx we have y = 0, so that
∇∇∇ˆ F ¨ ̂ simplifies to ´(5(0 + 2)´ 2

1+0

)
= ´8.

˝ The normal to Sy specified by Stokes’ theorem is ´ı̂ıı. On Sy we have x = 0, so that
∇∇∇ˆ F ¨ ı̂ıı simplifies to

(
5(0 + 1)´ 3

1+0

)
= 2.

So Stokes’ theorem gives

ż

C
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

Sx

8
hkkkkkkikkkkkkj

∇∇∇ˆ F ¨ (´̂) dS +

ĳ

Sy

´2
hkkkkkkikkkkkkj

∇∇∇ˆ F ¨ (´ı̂ıı) dS

= 8 Area(Sx)´ 2 Area(Sy) = 8
1
2
(2)(2)´ 2

1
2
(3)(2)

= 10

S-24: The boundary, BS, of S is the circle x2 + y2 = 1 oriented counter clockwise as usual.
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It may be parametrized by r(θ) = cos θ ı̂ıı + sin θ̂, 0 ď θ ď 2π. By Stokes’ theorem

ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¿

BS

F ¨ dr =
ż 2π

0
F
(
r(θ)

) ¨ dr
dθ

(θ)dθ

=

ż 2π

0
(sin θ, 0, 3 cos θ) ¨ (´ sin θ, cos θ, 0)dθ

= ´
ż 2π

0
sin2 θ dθ = ´

ż 2π

0
dθ

1´ cos(2θ)

2
= ´

[
θ

2
´ sin(2θ)

4

]2π

0

= ´π

For an efficient, sneaky, way to evaluate
ş2π

0 dθ sin2 θ, see Example 2.4.4 in the CLP-4 text.

S-25: The given surface is an ellipsoid centred at (x, y, z) = (0, 0, 1). It caps a curve C in
the plane z = 0, given by x2 + y2 = 4. This is a circle of radius 2 centred at the origin,
oriented counterclockwise when viewed from the positive z-axis.

Method I — double Stokes’: Let D denote the plane disk x2 + y2 ď 4, z = 0. Using Stokes’
theorem twice gives

ĳ

S

G ¨ n̂ dS =

ĳ

S

∇ˆ F ¨ n̂ dS =

¿

C

F ¨ dr =
ĳ

D

∇ˆ F ¨ n̂ dS =

ĳ

D

G ¨ n̂ dS

Now in D we have n̂ = k̂ and z = 0, so on this surface,

G ¨ n̂ = (∇ˆ F) ¨ k̂ = det




0 0 1
B
Bx

B
By

B
Bz

(xz´ y3 cos z) x3ez xyzex2+y2+z2




z=0

=
[
3x2ez + 3y2 cos z

]
z=0 = 3(x2 + y2)

Hence, using polar coordinates,

ĳ

S

G ¨ n̂ dS =

ĳ

D

3(x2 + y2)dxdy = 3
ż 2π

θ=0

ż 2

r=0
(r2) r dr dθ = 3(2π)(4) = 24π

Method II — single Stokes’: By Stokes’ theorem
ĳ

S

G ¨ n̂ dS =

ĳ

S

∇ˆ F ¨ n̂ dS =

¿

C

F ¨ dr

Parametrize the circle C using

r(θ) = 2 cos θ ı̂ıı + 2 sin θ ̂, 0 ď θ ď 2π
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to obtain

dr =
dr
dθ

dθ = (´2 sin θ ı̂ıı + 2 cos θ ̂)dθ.

Then since z = 0 on C,

ĳ

S

G ¨ n̂ dS =

ż 2π

0

(
F
(

r(θ)
)

hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

´(2 sin θ)3 ı̂ıı + (2 cos θ)3 ̂
) ¨ (

r1(θ)
hkkkkkkkkkkkikkkkkkkkkkkj

´2 sin θ ı̂ıı + 2 cos θ ̂
)

dθ

= 16
ż 2π

0

(
sin4 θ + cos4 θ

)
dθ

By the double angle trig identities

cos2 θ =
1 + cos(2θ)

2
sin2 θ =

1´ cos(2θ)

2

we have

sin4 θ + cos4 θ =

[
1´ cos(2θ)

]2

4
+

[
1 + cos(2θ)

]2

4

=
1
2
+

cos2(2θ)

2
=

1
2
+

1 + cos(4θ)

4

So
ĳ

S

G ¨ n̂ dS = 16
ż 2π

0

(
3
4
+

1
4

cos(4θ)

)
dθ = 16ˆ 3

4
ˆ (2π) = 24π

S-26: Note that

∇∇∇ˆ F = det

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

z2 x2 y2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

= 2y ı̂ıı + 2z ̂ + 2x k̂

Let D be the disk in the plane x + y + z = 3 whose boundary is C and let
n̂ = 1?

3
(ı̂ıı + ̂ + k̂) be the upward unit normal to D. If the circle is oriented

counterclockwise, when viewed from above, then, by Stokes’ theorem (Theorem 4.4.1 in
the CLP-4 text),

¿

C

F ¨ dr =
ĳ

D

∇∇∇ˆ F ¨ n̂ dS =
1?
3

ĳ

D

(
2y ı̂ıı + 2z ̂ + 2x k̂

) ¨ (ı̂ıı + ̂ + k̂) dS

=
1?
3

ĳ

D

2

=3 on D
hkkkkkikkkkkj(

x + y + z
)

dS = 2
?

3
ĳ

D

dS = 2
?

3πR2
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S-27: Solution 1: Let S1 be the bottom surface of the cube, oriented with normal k̂. Then,
by Stokes’ theorem, since BS = BS1,

ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¿

BS

F ¨ dr =
¿

BS1

F ¨ dr =
ĳ

S1

∇∇∇ˆ F ¨ n̂ dS

Since

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

xyz xy2 x2yz


 =

( ¨ ¨ ¨ , ¨ ¨ ¨ , y2 ´ xz
)

and n̂ = k̂ on S1 and z = ´1 on S1

ĳ

S1

∇∇∇ˆ F ¨ n̂ dS =

ż 1

´1
dx

ż 1

´1
dy
( ¨ ¨ ¨ , ¨ ¨ ¨ , y2 ´ xz

) ¨ k̂
ˇ

ˇ

ˇ

z=´1
=

ż 1

´1
dx

ż 1

´1
dy (y2 + x)

=

ż 1

´1
dx

ż 1

´1
dy y2 = 2ˆ 2

ż 1

0
dy y2 =

4
3

Solution 2: The boundary of S is the square C, with sides C1, ¨ ¨ ¨ , C4, in the sketch

(−1,−1,−1) C1
(1,−1,−1)

C2

(1, 1,−1)(−1, 1,−1) C3

C4

By Stokes’ theorem,
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¿

C

F ¨ dr

Parametrize C1 by x. That is, r(x) = xı̂ıı´ ̂´ k̂, ´1 ď x ď 1. Since r1(x) = ı̂ıı, and
y = z = ´1 on C1,

ż

C1

F ¨ dr =
ż 1

´1
F
(
r(x)

) ¨ r1(x) dx =

ż 1

´1
F
(
r(x)

) ¨ ı̂ıı dx =

ż 1

´1

xyz
hkkkkkikkkkkj

x(´1)(´1) dx

= 0 (since x is odd)

Parametrize C2 by y. That is, r(y) = ı̂ıı + y ̂´ k̂, ´1 ď y ď 1. Since r1(y) = ̂, and x = 1 on
C2,

ż

C2

F ¨ dr =
ż 1

´1
F
(
r(y)

) ¨ ̂ dy =

ż 1

´1

xy2
hkkikkj

y2 dy =

[
y3

3

]1

´1
=

2
3

431



Parametrize C3 by x. That is, r(x) = xı̂ıı + ̂´ k̂ with x running from 1 to ´1. (If you’re
nervous about this, parametrize by t = ´x. That is r(t) = ´t ı̂ıı + ̂´ k̂, ´1 ď t ď 1.) Since
r1(x) = ı̂ıı, and y = 1, z = ´1 on C3,

ż

C3

F ¨ dr =
ż ´1

1
F
(
r(x)

) ¨ ı̂ıı dx =

ż ´1

1

xyz
hkkkkikkkkj

x (1)(´1) dx = 0 (since x is odd)

Parametrize C4 by y. That is, r(y) = ´ı̂ıı + y ̂´ k̂, with y running from 1 to ´1. Since
r1(y) = ̂, and x = ´1 on C4,

ż

C4

F ¨ dr =
ż ´1

1
F
(
r(y)

) ¨ ̂ dy =

ż ´1

1

xy2
hkkikkj

(´1)y2 dy = ´
[

y3

3

]´1

1
=

2
3

All together
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ż

C1

F ¨ dr +
ż

C2

F ¨ dr +
ż

C3

F ¨ dr +
ż

C4

F ¨ dr =
4
3

S-28: Let’s try Stokes’ Theorem. Call F = y ı̂ıı´ x ̂ + xy k̂. Then

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

y ´x xy


 = x ı̂ıı´ y ̂´ 2 k̂

Now compute n̂ dS in the (u, v)-parametrization.

r(u, v) =
(
u cos v, u sin v, v

)

Br
Bu

(u, v) =
(

cos v, sin v, 0
)

Br
Bv

(u, v) =
(´ u sin v, u cos v, 1

)

Br
Bu
ˆ Br
Bv

= det




ı̂ıı ̂ k̂
cos v sin v 0
´u sin v u cos v 1


 =

(
sin v,´ cos v, u

)

n̂ dS =
(

sin v,´ cos v, u
)

du dv

Since u ě 0, we do indeed have the upward pointing normal. So, Stokes’ theorem tells us
ż

C
y dx´ x dy + xy dz =

ż

C
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS

=

ż 1

0
du

ż 2π

0
dv
(
u cos v,´u sin v,´2

) ¨ ( sin v,´ cos v, u
)

=

ż 1

0
du

ż 2π

0
dv
(
2u sin v cos v´ 2u

)
=

[
ż 1

0
du u

] [
ż 2π

0
dv
(

sin 2v´ 2
)
]

= 1
2(´4π) = ´2π
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S-29: Given the form of F, direct evaluation looks hard. So let’s try Stokes’ theorem, using
as S the part of the plane G(x, y, z) = x + 2y´ z = 7 that is inside x2 ´ 2x + 4y2 = 15.
Then

n̂ dS = ˘ ∇∇∇G
∇∇∇G ¨ k̂ dx dy = ˘(ı̂ıı + 2̂´ k̂

)
dx dy

As C is oriented counterclockwise when viewed from high, Stokes’ theorem specifies the
upward pointing normal so that n̂ dS = ´(ı̂ıı + 2̂´ k̂

)
dx dy.

From the observations that

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

ex2
+ yz cos(y2)´ x2 sin(z2) + xy


 = x ı̂ıı´ (z + 2x) k̂

and that we can rewrite x2 ´ 2x + 4y2 = 15 as (x´ 1)2 + 4y2 = 16, we have
¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS

=

ĳ

(x´1)2+4y2ď16

[xı̂ıı´ (z + 2x)k̂]
ˇ

ˇ

ˇ

z=´7+x+2y
¨ (´1,´2, 1)dx dy

=

ĳ

(x´1)2+4y2ď16

[´x´ (´7 + x + 2y + 2x)]dx dy

=

ĳ

(x´1)2+4y2ď16

[7´ 4x´ 2y]dx dy

To evaluate the integrals of x and y we use that, for any region R in the xy–plane,

x̄ =

ť

R x dx dy
Area(R)

ȳ =

ť

R y dx dy
Area(R)

Our ellipse is (x´1)2

42 + y2

22 = 1 and so has area πab = π ˆ 4ˆ 2 = 8π and centroid

(x̄, ȳ) = (1, 0). So, using R =
 

(x, y)
ˇ

ˇ

(x´1)2

42 + y2

22 ď 1
(

,

¿

C

F ¨ dr =
ĳ

R

[7´ 4x´ 2y]dx dy

= Area(R)
 

7´ 4x̄´ 2ȳu
= 8π[7´ 4ˆ 1´ 2ˆ 0] = 24π
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S-30: (a) The curl is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

2 + x2 + z 0 3 + x2z


 = (1´ 2xz) ̂

(b) We are going to use Stokes’ theorem. The specified curve C is not closed and so is not
the boundary of a surface. So we extend C to a closed curve C̃ by appending to C the line
segment L from (2, 0, 0) to (0, 0, 0). In the figure below, C is the red curve and C̃ is C plus
the blue line segment. The closed curve C̃ is boundary of the surface S that is the union

y

z

x

C C

C
L

−ı̂ıı

−k̂

(2, 0, 0)

(0, 1, 0)

(0, 0, 3)

T1

T2

of

˝ the triangle T1 in the yz-plane with vertices (0, 0, 0), (0, 0, 3) and (0, 1, 0) and with
normal vector ´ı̂ıı and

˝ the triangle T2 in the xy-plane with vertices (0, 0, 0), (0, 1, 0) and (2, 0, 0) and with
normal vector ´k̂.

So, by Stokes’ theorem

ż

C
F ¨ dr +

ż

L
F ¨ dr =

ż

BS
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS

=

ĳ

T1

∇∇∇ˆ F ¨ (´ı̂ıı)dS +

ĳ

T2

∇∇∇ˆ F ¨ (´k̂)dS

=

ĳ

T1

(1´ 2xz) ̂ ¨ (´ı̂ıı)dS +

ĳ

T2

(1´ 2xz) ̂ ¨ (´k̂)dS

= 0

434



Consequently the integral of interest

ż

C
F ¨ dr = ´

ż

L
F ¨ dr = ´

ż 0

2
(2 + x2)dx since dy = dz = z = 0 on L

=

ż 2

0
(2 + x2)dx =

[
2x +

x3

3

]2

0
=

20
3

S-31: (a) by direct evaluation: The curl of G is

∇∇∇ˆG = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

x ´z y


 = 2ı̂ıı

The part of S in the first octant is sketched in the figure on the left below. S consists of
two parts — the cylindrical surface

S1 =
 

(x, y, z)
ˇ

ˇ y2 + z2 = 9, 0 ď x ď 5
(

and the disc
S2 =

 

(x, y, z)
ˇ

ˇ x = 0, y2 + z2 ď 9
(

The normal n̂ to S1 always points radially outward from the cylinder and so always has ı̂ıı
component zero. The normal of S2 is ´ı̂ıı. So the flux is

ĳ

S

∇∇∇ˆG ¨ n̂ dS =

ĳ

S1

2ı̂ıı ¨ n̂ dS +

ĳ

S2

2ı̂ıı ¨ (´ı̂ıı)dS

= ´2
ĳ

S2

dS

= ´2
(
π32) = ´18π

(a) using Stokes’ theorem: Let’s use Stokes’ theorem. The boundary BS of S is the cirlce
y2 + z2 = 9, x = 5, oriented clockwise when viewed from far down the x-axis. We’ll
parametrize it by r(θ) =

(
5, 3 cos θ,´3 sin θ

)
. Then Stokes’ theorem gives

ĳ

S

∇∇∇ˆG ¨ n̂ dS =

¿

BS

G ¨ dr

=

ż 2π

0

(
5 , 3 sin θ, 3 cos θ

) ¨ (0 , ´3 sin θ , ´3 cos θ
)

dθ

=

ż 2π

0

(´ 9 sin2 θ ´ 9 cos2 θ
)

dθ

= ´18π
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x

y

z

n̂

S

∂S

x

y

z

n̂

S

T

ı̂ıı

(b) This time we’ll use the divergence theorem. The surface S is not closed. So we’ll use
the auxilary surface formed by “topping S off” with the cap T =

 

(5, y, z)
ˇ

ˇ y2 + z2 ď 9
(

.
If we give T the normal vector ı̂ıı, this auxiliary surface, the union of S and T, is the
boundary of V =

 

(x, y, z)
ˇ

ˇ y2 + z2 ď 9, 0 ď x ď 5
(

. So the divergence theorem gives
ĳ

S

F ¨ n̂ dS +

ĳ

T

F ¨ n̂ dS =

ĳ

BV

F ¨ n̂ dS

=

¡

V

∇∇∇ ¨ F dV

= 0

since∇∇∇ ¨ F = 0. Thus the flux of interest is
ĳ

S

F ¨ n̂ dS = ´
ĳ

T

F ¨ n̂ dS = ´
ĳ

T

F ¨ ı̂ıı dS = ´
ĳ

T

(2 + z)dS

= ´2
ĳ

T

dS since
ĳ

T

z dS = 0, because z is odd

= ´18π since T has area 9π

S-32: (a) Since

˝ y
x is defined when x ‰ 0 and

˝ x1+x2
= e(1+x2) ln x is defined when ln x is defined, which is when x ą 0 (assuming

that we are not allowed to use complex numbers) and
˝ y1+y2

= e(1+y2) ln y is defined when ln y is defined, which is when y ą 0 and
˝ cos5(ln z) is defined when ln z is defined, which when z ą 0

the domain of F is
D =

 

(x, y, z)
ˇ

ˇ x ą 0, y ą 0, z ą 0
(

(b) The domain D is both connected (any two points in D can be joined by a curve that
lies completely in D) and simply connected (any simple closed curve in D can be shrunk
to a point continuously in D).
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(c) The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

y
x + x1+x2

x2 ´ y1+y2
cos5(ln z)


 =

(
2x´ 1/x

)
k̂

(d) The integrand for direct evaluation looks very complicated. On the other hand∇∇∇ˆ F
is quite simple. So let’s try Stokes’ thoerem. Denote

S =
 

(x, y, z)
ˇ

ˇ 2 ď x ď 4, 2 ď y ď 4, z = 2
(

The boundary of S is C. Because of the clockwise orientation of C, we assign the normal
vector ´k̂ to S. See the sketch below

x

y

z

n̂

(2,2,2) (2,4,2)

(4,2,2) (4,4,2)

C

Then, by Stokes’ theorem,
¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

S

∇∇∇ˆ F ¨ (´k̂)dS = ´
ĳ

S

(
2x´ 1

x
)

dS

= ´
ż 4

2
dx

ż 4

2
dy
(
2x´ 1

x
)
= ´

ż 4

2
dx 2

(
2x´ 1

x
)
= ´2

[
x2 ´ ln x

]4

2

= ´2
[
12´ ln 2

]
= 2 ln 2´ 24

(e) Since∇∇∇ˆ F is not 0, F cannot be conservative.

S-33: (a) By the vector identity∇∇∇ ¨ (∇∇∇ˆG
)
= 0 (Theorem 4.1.7.a of the CLP-4 text). So

we must have

0 =∇∇∇ ¨ F =
B
Bx
(
xz
)
+
B
By
(
axeyz + byz

)
+
B
Bz
(
y2 ´ xeyz2)

= z +
(
axeyz + bz

)
+
(´ 2xeyz

)

= (1 + b)z + (a´ 2)xeyz

So we need a = 2 and b = ´1.

(b) Note that the boundary, BS, is the circle x2 + y2 = 1, z = 0, oriented
counter-clockwise. Also note that, if we knew what G was, we would be able to use
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Stokes’ theorem to give
ĳ

S

F ¨ n̂ dS =

ĳ

S

(∇∇∇ˆG) ¨ n̂ dS =

¿

BS

G ¨ dr

So let’s find a vector potential G. That is, let’s try and find a vector field
G = G1 ı̂ıı + G2 ̂ + G3 k̂ that obeys∇∇∇ˆG = F, or equivalently,

BG3

By
´ BG2

Bz
= F1 = xz

´BG3

Bx
+
BG1

Bz
= F2 = 2xeyz´ yz

BG2

Bx
´ BG1

By
= F3 = y2 ´ xeyz2

Let’s also require that G3 = 0. (If this is mysterious to you, review §4.1.2 in the CLP-4
text.) Then the equations above simplify to

´BG2

Bz
= xz

BG1

Bz
= 2xeyz´ yz

BG2

Bx
´ BG1

By
= y2 ´ xeyz2

Now the first equation contains only a single unknown, namely G2 and we can find all
G2’s that obey the first equation simply by integrating with respect to z:

G2 = ´xz2

2
+ N(x, y)

Note that, because B
Bz treats x and y as constants, the constant of integration N is allowed

to depend on x and y.

Similarly, the second equation contains only a single unknown, G1, and is easily solved
by integrating with respect to z. The second equation is satisfied if and only if

G1 = xeyz2 ´ 1
2

yz2 + M(x, y)

for some function M.

Finally, the third equation is also satisfied if and only if M(x, y) and N(x, y) obey

B
Bx

(
´ xz2

2
+ N(x, y)

)
´ BBy

(
xeyz2 ´ yz2

2
+ M(x, y)

)
= y2 ´ xeyz2

which simplifies to
BN
Bx

(x, y)´ BM
By

(x, y) = y2
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This is one linear equation in two unknowns, M and N. Typically, we can easily solve
one linear equation in one unknown. So we are free to eliminate one of the unknowns by
setting, for example, M = 0, and then choosing any N that obeys

BN
Bx

(x, y) = y2

Integrating with respect to x gives, as one possible choice, N(x, y) = xy2. So we have
found a vector potential. Namely

G =
(

xeyz2 ´ 1
2

yz2
)

ı̂ıı +
(

xy2 ´ xz2

2

)
̂

We can now evaluate the flux. Parametrize BS by

r(θ) = cos θ ı̂ıı + sin θ ̂

r1(θ) = ´ sin θ ı̂ıı + cos θ ̂

with 0 ď θ ď 2π. So
ĳ

S

F ¨ n̂ dS =

¿

BS

G ¨ dr

=

ż 2π

0

(
G(r(θ))

hkkkkkkikkkkkkj

cos θ sin2 θ ̂
)
¨

r1(θ)
hkkkkkkkkkkkikkkkkkkkkkkj(´ sin θ ı̂ıı + cos θ ̂

)
dθ

=

ż 2π

0
sin2 θ cos2 θ dθ

=

ż 2π

0

1´ cos(2θ)

2
1 + cos(2θ)

2
dθ

=
1
4

ż 2π

0

 

1´ cos2(2θ)
(

dθ

=
1
4

ż 2π

0

!

1´ 1 + cos(4θ)

2

)

dθ

=
1
4

1
2

2π since
ż 2π

0
cos(4θ) dθ = 0

=
π

4

S-34: Considering that there are ten line segments in C, it is probably not very efficient to
use direct evaluation. Two other possible methods come to mind. If F is conservative, we
can use F’s potential. Even if F is not conservative, it may be possible to efficiently use
Stokes’ (or Green’s) theorem. So let’s compute

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

y 2x´ 10 0


 = k̂
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As∇∇∇ˆ F ‰ 0, the vector field F is not conservative. As∇∇∇ˆ F ‰ 0 is very simple, it looks
like Stokes’ theorem could provide an efficient way to compute the integral. The left
figure below contains a sketch of C.

(0, 0)

(0, 1) (1, 1)

(2, 2)

(3, 3)

(4, 4)

(5, 5)

(1, 2)

(2, 3)

(3, 4)

(4, 5)

C

x

y

L

(0, 0)

(0, 1) (1, 1)

(2, 2)

(3, 3)

(4, 4)

(5, 5)

(1, 2)

(2, 3)

(3, 4)

(4, 5)

C

x

y

The curve C is not closed, and so is not the boundary of a surface, so we cannot apply
Stokes’ theorem directly. But we can easily come up with a surface whose boundary
contains C. Let R be the shaded region in the figure on the right above. The boundary BR
of R consists of two parts — C and the line segment L. The normal of R for ´k̂ (since BR
is oriented clockwise). So Stokes’ theorem gives

ż

C
F ¨ dr +

ż

L
F ¨ dr =

ĳ

R

∇∇∇ˆ F ¨ (´k̂) dS =

ĳ

R

(k̂) ¨ (´k̂) dS = ´Area(R)

R is the union of 5 triangles, each of height 1 and base 1. So

Area(R) = 5ˆ 1
2
ˆ 1ˆ 1 =

5
2

If we denote by ´L the line segment from (0, 0) to (5, 5), we can parametrize ´L by
r(t) = t(5, 5), 0 ď t ď 1 and

ż

´L
F ¨ dr =

ż 1

0

F(r(t))
hkkkkkkkkkkkikkkkkkkkkkkj(
5t ı̂ıı + (10t´ 10) ̂

) ¨
r1(t)

hkkkkikkkkj

(5 ı̂ıı + 5 ̂) dt =
ż 1

0
5
(
15t´ 10

)
dt = 25

(
3
2
´ 2
)

= ´25
2

All together
ż

C
F ¨ dr = ´Area(R)´

ż

L
F ¨ dr = ´Area(R) +

ż

´L
F ¨ dr = ´5

2
´ 25

2
= ´15

S-35: If we parametrize the curve as

x = 2 cos θ y = 2 sin θ z = x2 = 4 cos2 θ 0 ď θ ď 2π
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then the term sin x(θ)2 x1(θ) in the integral will be sin
(
4 cos2 θ

)
(´2 sin θ). That looks

hard to integrate. So let’s try Stokes’ theorem. The curl of F is

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

sin x2 xz z2


 = ´x ı̂ıı + z k̂

The curve C is the boundary of the surface

S =
 

(x, y, z)
ˇ

ˇ x2 + y2 ď 4, z = x2 (

with upward pointing normal. For the surface z = f (x, y) = x2, (3.3.2) in the CLP-4 text
gives

n̂ dS = ˘[´ fx(x, y) ı̂ıı´ fy(x, y) ̂ + k̂
]

dxdy

= ˘[´ 2x ı̂ıı + k̂
]

dxdy

Since we want the upward pointing normal

n̂ dS =
[´ 2x ı̂ıı + k̂

]
dxdy

So by Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text)

¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

x2+y2ď4

(´ x ı̂ıı +

z
hkkikkj

x2 k̂
) ¨ [´ 2x ı̂ıı + k̂

]
dxdy

= 3
ĳ

x2+y2ď4

x2 dxdy

Switching to polar coordinates

¿

C

F ¨ dr = 3
ż 2

0
dr r

ż 2π

0
dθ r2 cos2 θ

= 3

[
ż 2

0
r3 dr

] [
ż 2π

0
cos2 θ dθ

]

= 3
24

4

[
ż 2π

0

cos(2θ) + 1
2

dθ

]

= 12π

For an efficient, sneaky, way to evaluate
ş2π

0 cos2 t dt see Example 2.4.4 in the CLP-4 text.

S-36: By Stokes’ Theorem,
¿

C

E ¨ dr =
ĳ

S

(∇∇∇ˆ E) ¨ n̂ dS
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so Faraday’s law becomes
ĳ

S

(
∇∇∇ˆ E +

1
c
BH
Bt

)
¨ n̂ dS = 0

This is true for all surfaces S. So the integrand, assuming that it is continuous, must be
zero.

To see this, let G =
(
∇∇∇ˆ E + 1

c
BH
Bt

)
. Suppose that G(x0) ‰ 0. Pick a unit vector n̂ in the

direction of G(x0). Let S be a very small flat disk centered on x0 with normal n̂ (the
vector we picked). Then G(x0) ¨ n̂ ą 0 and, by continuity, G(x) ¨ n̂ ą 0 for all x on S, if we

have picked S small enough. Then
ť

S

(
∇∇∇ˆ E + 1

c
BH
Bt

)
¨ n̂ dS ą 0, which is a

contradiction. So G = 0 everywhere and we conclude that

∇∇∇ˆ E +
1
c
BH
Bt

= 0

S-37: The curl of the specified vector field is

∇ˆ F = ∇ˆ (z ı̂ıı + x ̂ + y3z3 k̂
)

= det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

z x y3z3




= 3y2z3 ı̂ıı + ̂ + k̂

For every t, we have x(t) = z(t) and x(t)2 + y(t)2 + z(t)2 = 2. So the specified curve is
the intersection of the plane x = z and the sphere x2 + y2 + z2 = 2. This curve is the
boundary of the circular disk

D =
 

(x, y, z)
ˇ

ˇ x = z, x2 + y2 + z2 ď 2
(

The curve is oriented so that
(
x(t), y(t)

)
=
(

cos t,
?

2 sin t
)

runs in the standard
(counterclockwise) direction. So the unit normal to D used in Stokes’ theorem has
positive k̂ component. Since the plane x´ z = 0 has unit normal ˘ 1?

2
(1, 0,´1), the unit

normal used in Stokes’ theorem is n̂ = 1?
2
(´1, 0, 1). By Stokes’ theorem

¿

C

F ¨ dr =
ĳ

D

∇ˆ F ¨ n̂ dS =
1?
2

ĳ

D

(3y2z3, 1, 1) ¨ (´1, 0, 1) dS

=
1?
2

ĳ

D

(1´ 3y2z3) dS

The disk D is invariant under the reflection (x, y, z)Ñ (´x, y,´z). Since y2z3 is odd
under this reflection,

ť

D y2z3 ds = 0 and
¿

F ¨ dr =
1?
2

ĳ

D

dS =
1?
2

Area(D)
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Because the centre of the ball x2 + y2 + z2 ď 2 (namely (0, 0, 0)) is contained in the plane
x = z, the radius of the disk D is the same as the radius of the sphere x2 + y2 + z2 = 2. So
D has radius

?
2 and

¿

F ¨ dr =
1?
2

Area(D) =
1?
2

π
(?

2
)2

=
?

2π

S-38: The curl of the vector field F = z ı̂ıı + x ̂´ y k̂ is

∇∇∇ˆ F = ´ı̂ıı + ̂ + k̂

The unit normal to the plane x + y + z = 1, with positive k̂ component as required by
Stokes’ theorem in this case, is n̂ = 1?

3
(1, 1, 1). If we denote by D the circular disk

x + y + z = 1, x2 + y2 + z2 ď 1, then Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text)
says

¿

C

z dx + x dy´ y dz =

¿

C

F ¨ dr =
ĳ

D

∇∇∇ˆ F ¨ n̂ dS =

ĳ

D

(´1, 1, 1) ¨ 1?
3
(1, 1, 1)dS

=
1?
3

Area(D)

A reasonable guess for the centre of the disk is 1
3(1, 1, 1). (This guess is just based on

symmetry.) To check this we just need to observe that it is indeed on the plane
x + y + z = 1 and that the distance from 1

3(1, 1, 1) to any point (x, y, z) obeying
x + y + z = 1 and x2 + y2 + z2 = 1, namely
d

(
x´ 1

3

)2
+
(

y´ 1
3

)2
+
(

z´ 1
3

)2
=

c

x2 + y2 + z2 ´ 2
3
(x + y + z) +

3
9
=

c

1´ 2
3
+

1
3

=

c

2
3

is the same. This also tells us that D has radius
b

2
3 and hence area 2

3 π. So the specified

line integral is 2π
3
?

3
.

S-39: (a) We parametrize S in cylindrical coordinates:

r(r, θ) = r cos θ ı̂ıı + r sin θ ̂ + r k̂ with 0 ď r ď 1, 0 ď θ ď π

(b) We compute

Br
Br

= cos θ ı̂ıı + sin θ ̂ + k̂

Br
Bθ

= ´r sin θ ı̂ıı + r cos θ ̂

n̂ dS = ˘Br
Br
ˆ Br
Bθ

drdθ = ˘(´ r cos θ ı̂ıı´ r sin θ ̂ + r k̂
)

drdθ
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To calculate the downward flux, we use the minus sign. We find
ĳ

S

v ¨ n̂ dS =

ż π

0
dθ

ż 1

0
dr (r cos θ, r sin θ,´2r) ¨ (r cos θ, r sin θ,´r)

=

ż π

0
dθ

ż 1

0
dr 3r2 = πr3

ˇ

ˇ

ˇ

1

r=0
= π

(c) Solution 1: Let P be the path along line segments from (1, 0, 1) to (0, 0, 0) and from
(0, 0, 0) to (´1, 0, 1). Here is a sketch. P is in blue.

z

y

x

z =
√
x2 + y2

(1, 0, 1)

(−1, 0, 1)

Then
ż

C
F ¨ dr +

ż

P
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS

by Stokes’ Theorem. Along P , the vector field F is orthogonal to the curve so that
ş

P F ¨ dr = 0. Note that ∇ˆ F is the vector field v from part (b). Thus
ż

C
F ¨ dr =

ĳ

S

v ¨ n̂ dS = π

(c) Solution 2: Let L be the line segment from (1, 0, 1) to (´1, 0, 1) and let

R = t(x, y, z)u x2 + y2 ď 1, y ě 0, z = 1

Here is a sketch. L is in blue andR is shaded.

z

y

x

z =
√
x2 + y2

(1, 0, 1)

(−1, 0, 1)

CL R
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Then
ż

C
F ¨ dr +

ż

L
F ¨ dr =

ĳ

R

∇∇∇ˆ F ¨ (´k̂)dS

by Stokes’ Theorem. Along L, the vector field F = ̂ is orthogonal to the curve (which has
direction ´ı̂ıı so that

ş

L F ¨ dr = 0. Note that ∇ˆ F is the vector field v from part (b). Thus
ż

C
F ¨ dr = ´

ĳ

R

v ¨ k̂ dS =

ĳ

R

2z dS = 2
ĳ

R

dS = 2 Area(R) = π

S-40: Let S1 be the portion of x + y + z = 1 that is inside the sphere x2 + y2 + z2 = 1. Then
BS = BS1, so, by Stokes’ theorem, (with n̂ always the upward pointing normal)

ĳ

S1

(∇∇∇ˆ F) ¨ n̂ dS =

¿

BS1

F ¨ dr =
¿

BS

F ¨ dr =
ĳ

S

(∇∇∇ˆ F) ¨ n̂ dS

As

∇∇∇ˆ F = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

y´ z z´ x x´ y


 = ´2(ı̂ıı + ̂ + k̂)

and, on S1, n̂ = 1?
3
(ı̂ıı + ̂ + k̂)

ĳ

S1

(∇∇∇ˆ F) ¨ n̂ dS =

ĳ

S1

(´ 2
?

3
)

dS = ´2
?

3ˆArea(S1)

S1 is the intersection of a plane with a sphere and so is a circular disk. It’s center
(xc, yc, zc) has to obey xc + yc + zc = 1. By symmetry, xc = yc = zc, so xc = yc = zc =

1
3 .

Any point, (x, y, z), which satisfies both x + y + z = 1 and x2 + y2 + z2 = 1, obeys

(
x´ 1

3

)2

+

(
y´ 1

3

)2

+

(
z´ 1

3

)2

= x2 + y2 + z2 ´ 2
3
(x + y + z) + 3

1
9
= 1´ 2

3
+

1
3
=

2
3

That is, any point on the boundary of S1 is a distance
b

2
3 from

(1
3 , 1

3 , 1
3

)
. So the radius of

S1 is
b

2
3 , the area of S1 is 2

3 π and

ĳ

S1

(∇∇∇ˆ F) ¨ n̂ dS = ´2
?

3ˆArea(S1) = ´ 4?
3

π

Solutions to Exercises 5 — Jump to TABLE OF CONTENTS
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S-1: (a) True. For any constant vector a = (a1, a2, a3),

aˆ r = det




ı̂ıı ̂ k̂
a1 a2 a3
x y z


 = (a2z´ a3y)ı̂ıı´ (a1z´ a3x)̂ + (a1y´ a2x)̂

This vector field does indeed have divergence 0.

(b) True. This is our conservative field screening condition Theorem 4.1.7.b.

(c) True. This is one of our vector identities, namely Theorem 4.1.4.c.

(d) False. The trap here is that F need not be defined at the origin. We saw, in Example
3.4.2 of the CLP-4 text, that the point source FS = mr

|r|3 had flux 4πm through every sphere
centred on the origin. We also saw, in Example 4.2.7 of the CLP-4 text, that the
divergence∇∇∇ ¨ FS = 0 everywhere except at the origin (where it is not defined). So if we
choose m to be a very big negative number (say ´10100) and add in a very small vector
field with positive divergence (say 10´100(xı̂ıı + ŷ + zk̂)), we will get the vector field
F = ´10100 r

|r|3 + 10´100(xı̂ıı + ŷ + zk̂) which has divergence∇∇∇ ¨ F = 3ˆ 10´100 ą 0
everywhere except at the origin. The flux of this field through the specified sphere will be
´4π ˆ 10100 plus a very small positive number.

(e) True. The statement that “the flux out of one hemisphere is equal to the flux into the
opposite hemisphere” is equivalent to the statement that “the flux out of the sphere is
equal to zero”. Since∇∇∇ ¨ F = 0 everywhere, that is true by the divergence theorem.

(f) That depends.

If κ = 0, then dT̂
ds = 0, so that dr

ds = T̂ is a constant. So r(s) = sT̂ + r(0) is part of a straight
line.

If κ ą 0, then, because the curve is in a plane, the torsion τ is zero and the Frenet-Serret
formulae reduce to

dT̂
ds

= κN̂
dN̂
ds

= ´κT̂

Now consider the centre of curvature c(s) = r(s) + 1
κ N̂(s). Since

dc
ds

=
dr
ds

+
1
κ

dN̂
ds

= T̂(s) +
1
κ

(´ κT̂(s)
)
= 0

c(s) is a constant and

|r(s)´ c| = 1
κ

which says that the curve is part of the circle of radius 1
κ centred on c.

(g) False. We saw in Examples 2.3.14 and 4.3.8 of the CLP-4 text that the given vector
field is not conservative.

(h) False. For example, if P = ´y, then
ű

C F ¨ dr = ´ ű

C y dx is the area inside C. See
Corollary 4.3.5 in the CLP-4 text.

(i) False.
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If dv
dt = a is a constant, then v(t) = a t + v0. Integrating a second time,

r(t) = 1
2 a t2 + v0 t + r0. This is not a spiral, whether or not the speed is constant. (In fact,

for the speed |v(t)| = |a t + v0| to be constant, a has to be 0, so that r(t) = v0 t + r0 is a
straight line.)

Another way to come to the same conclusion uses

a(t) =
d2s
dt2 (t) T̂(t) + κ(t)

(ds
dt

(t)
)2

N̂(t)

As the speed ds
dt is a constant, it reduces to

a(t) = κ(t)
(ds

dt
(t)
)2

N̂(t)

As a(t) is a constant, its direction, N̂(t), is also a constant. The normal vector to a spiral is
not constant.

S-2: (a) False. For any constant vector a = (a1, a2, a3),

aˆ r = det




ı̂ıı ̂ k̂
a1 a2 a3
x y z


 = (a2z´ a3y)ı̂ıı´ (a1z´ a3x)̂ + (a1y´ a2x)̂

So

∇∇∇ˆ (aˆ r) = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

a2z´ a3y ´a1z + a3x a1y´ a2x


 = 2a1ı̂ıı + 2a2 ̂ + 2a3k̂

is nonzero, unless the constant vector a = 0.

(b) False. For example, if f (x) = x2, then

∇∇∇ ¨ (∇∇∇ f ) =∇∇∇ ¨ (∇∇∇x2) =∇∇∇ ¨ (2xı̂ıı) = 2

(c) False. For example, if F = x2ı̂ıı, then

∇∇∇(∇∇∇ ¨ F) =∇∇∇(∇∇∇ ¨ (x2ı̂ıı)
)
=∇∇∇(2x) = 2ı̂ıı

(d) False. The trap here is that F need not be defined at the origin. We saw, in Example
3.4.2 of the CLP-4 text, that the point source F = mr

|r|3 had flux 4πm through every sphere
centred on the origin. We also saw, in Example 4.2.7 of the CLP-4 text, that the
divergence∇∇∇ ¨ F = 0 everywhere except at the origin (where it is not defined).

(e) True. Any simple, smooth, closed curve in R3 that avoids the origin is the boundary
of a surface S that also avoids the origin. Then, by Stokes’ theorem,

¿

C

F ¨ dr =
ĳ

S

∇∇∇ˆ F ¨ n̂ dS = 0
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(f) True. Let S =
 

r
ˇ

ˇ |r´ c| = R
(

be a sphere. Denote by V =
 

r
ˇ

ˇ |r´ c| ď R
(

the ball
whose boundary is S. Let H be one hemisphere of S with outward pointing normal and
let H1 be the other hemisphere of S with inward point normal. Then the boundary of V,
with outward pointing normal, can be viewed as consisting of two parts, namely H and
´H1, where by ´H1 we mean H1 but with outward pointing normal. Then, by the
divergence theorem

ĳ

H

F ¨ n̂ dS´
ĳ

H1

F ¨ n̂ dS =

ĳ

BV

F ¨ n̂ dS

=

¡

V

∇∇∇ ¨ F dV ą 0

which implies that
ť

H F ¨ n̂ dS ą ť

H1 F ¨ n̂ dS.

(g) False. The trap here is that the curve is in R3, not R2. As we saw in Example 1.4.4 of
the CLP-4 text, a helix has constant curvature, but does not lie in a plane and so is not
part of a circle.

(h) False. Even if we restrict F to the xy-plane (i.e. to z = 0), this vector field is not
conservative. We saw that in Examples 2.3.14 and 4.3.8 of the CLP-4 text.

(i) False. For example, the vector field F = x k̂ is always parallel to the z-axis. So its flow
lines are also all parallel to the z-axis. But if the closed curve C consists of the line
segments

˝ L1 from (0, 0, 0) to (1, 0, 0), followed by
˝ L2 from (1, 0, 0) to (1, 0, 1), followed by
˝ L3 from (1, 0, 1) to (0, 0, 1), followed by
˝ L4 from (0, 0, 1) back to (0, 0, 0),

x

y

z

L1

L2

L3

L4

(1, 0, 1)

then

˝ ş

L1
F ¨ dr =

ş1
0(xk̂) ¨ ı̂ıı dx = 0 since k̂ K ı̂ıı, dr = ı̂ıı dx on L1 and

˝ ş

L2
F ¨ dr =

ş1
0(1k̂) ¨ k̂ dz = 1 since x = 1 and dr = k̂ dz on L2 and

˝ ş

L3
F ¨ dr = ´ ş1

0(xk̂) ¨ ı̂ıı dx = 0 since k̂ K ı̂ıı and

˝ ş

L4
F ¨ dr = ´ ş1

0(0k̂) ¨ k̂ dz = 0 since x = 0 on L4.

All together
ż

C
F ¨ dr =

ż

L1

F ¨ dr +
ż

L2

F ¨ dr +
ż

L3

F ¨ dr +
ż

L4

F ¨ dr = 1

(j) True. If the speed |v| is constant then

0 =
d
dt
|v|2 =

d
dt

(v ¨ v) = 2v ¨ a
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S-3: (a) False. r2(t) is the full acceleration. So |r2(t)| is the magnitude of the full
acceleration, not just the tangential component of acceleration. For example, if
r(t) = cos t ı̂ıı + sin t ̂ (i.e. the particle is just going around in circles), the acceleration
r2(t) = ´ cos t ı̂ıı´ sin t ̂ is perpendicular to the direction of motion. So the tangential
component of acceleration is zero, while |r2(t)| = 1.

(b) T̂(t) is the tangent vector to the curve at r(t). N̂(t) and B̂(t) are both perpendicular to
T̂(t) (and to each other) and so span the plane normal to the curve at r(t).

(c) True. This is (half of) Theorem 2.4.7 in the CLP-4 text.

(d) False. The statement∇∇∇ˆ (∇∇∇ ¨ F) = 0 is just plain gibberish, because∇∇∇ ¨ F is a scalar
valued function and there is no such thing as the curl of a scalar valued function.

(e) False. For example if F = ı̂ıı, then, by the divergence theorem,
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV = 0

Here V =
 

x, y, z
ˇ

ˇ x2 + y2 + z2 ď 1
(

is the inside of the sphere.

(f) True. If S is the boundary of the solid region E, then we can orient S by always
choosing the normal vector that points into E.

S-4: (a) The helix is approximately a bunch of circles stacked one on top of each other.
The radius of the circles increase as z increases. So the curvature decreases as z increases.

(b) Here are two arguments both of which conclude that f (x) is D.

˝ If C were the graph y = f (x), then f 1(x) would have two points of discontinuity.
The curvature κ(x) would not the defined at those two points. The function whose
graph is D is defined everywhere and so cannot be the curvature of the function
whose graph is C.

˝ The function whose graph is D has two inflection points. So its curvature is zero at
two points. The function whose graph is C is indeed zero at two points (that in fact
correspond to the inflection points of D). So D is the graph of f (x) and C is the
graph of κ(x).

(c) For any fixed y, x2 + z2 = 1 is a circle of radius 1. So we can parametrize it by
x(θ) = cos θ, z(θ) = sin θ, 0 ď θ ă 2π. The y-coordinate of any point on the intersection
is determined by y = xz. So we can use

r(θ) = cos θ ı̂ıı + sin θ k̂ + sin θ cos θ ̂ 0 ď θ ă 2π

(d) We are told that the helical ramp starts starts with the y-axis when z = 0.

˝ In the cases of parametrisations (a) and (c), z = 0 forces u = 0 and u = 0 forces
x = y = 0. That is only the origin, not the y-axis. So we can rule out (a) and(c).

˝ In the case of parametrisation (b), z = 0 forces v = 0 and v = 0 forces y = 0 and
x = u. As u varies that sweeps out the x-axis, not the y-axis. So we can rule out (b).
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˝ In the case of parametrisation (d), z = 0 forces v = 0 and v = 0 forces x = 0 and
y = u. As u varies that sweeps out the y-axis, which is what we want.

Furthermore

˝ we are told that z = v runs from 0 to 5 and that
˝ x2 + y2 = u2 ě 4

So we want parametrisation (d) with domain |u| ě 2, 0 ď v ď 5.

(e) Straight lines have curvature 0. So one acceptable parametrized curve is r(t) = t ı̂ıı,
0 ď t ď 1.

(f) The cube S has six sides. So the outward flux through BS is 6 and, by the divergence
theorem,

6 =

ĳ

BS

F ¨ n̂ dS =

¡

S

∇∇∇ ¨ F dV =

¡

S

C dV = C

since S has volume one. So C = 6.

(g) For the vector field F to be conservative, we need

BF1

By
=
BF2

Bx

ðñ B
By

(ax + by) =
B
Bx

(cx + dy)

ðñ b = c

When b = c, an allowed potential is a
2 x2 + bxy + d

2 y2. The specified set is

 

(a, b, c, d)
ˇ

ˇ a, b, c, d all real and b = c
(

(h) By the definition of arclength parametrisation, the arclength along the curve between
r(0) and r(s) is s. In particular, the arclength between r(0) and r(3) is 3 and the arclength
between r(0) and r(5), which is the same as the arclength between r(0) and r(3) plus the
arclength between r(3) and r(5), is 5. So the arclength between r(3) and r(5) is 5´ 3 = 2.

(i) In this solution, we’ll use, for example ´T to refer to the curve T, but with the arrow
pointing in the opposite direction to that of the arrow on T.

In parts (2), (3) and (4) we will choose F to be the vector field

G(x, y) = ´ y
x2 + y2 ı̂ıı +

x
x2 + y2 ̂

We saw, in Example 2.3.14 of the CLP-4 text, that∇∇∇ˆG = 0 except at the origin where it
is not defined. We also saw, in Example 4.3.8 of the CLP-4 text, that

ű

C G ¨ dr = 2π for
any counterclockwise oriented circle centred on the origin.
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(1) LetR1 be the region between S and T. It is the shaded region in the figure on the
left below. Note thatR1 is contained in the domain of F, so that∇∇∇ˆ F = 0 on all of
R1. The boundary ofR1 is S´ T, meaning that the boundary consists of two parts,
with one part being S and the other part being ´T. So, by Stokes’ theorem

ż

S
F ¨ dr´

ż

T
F ¨ dr =

ż

BR1

F ¨ dr =
ĳ

R1

∇∇∇ˆ F ¨ k̂ dS = 0

and (1) is true.

S

T
R1

UR

R2

(2) False. Choose a coordinate system so that Q is at the origin and choose F = G. We
saw, in Examples 2.3.14 and 4.3.8 of the CLP-4 text, that the curl of G vanished
everywhere except at the origin, where it was not defined, but that

ş

R G ¨ dr ‰ 0.
(3),(4) False. Here is a counterxample that shows that both (3) and (4) are false. Choose a

coordinate system so that Q is at the origin and choose F = G. By Stokes’ theorem
ż

S
G ¨ dr =

ż

T
G ¨ dr = 0

because∇∇∇ˆG = 0 everywhere inside S, including at P. So now both parts (3) and
(4) reduce to the claim that

ş

U G ¨ dr =
ş

R G ¨ dr.
We saw, in Example 4.3.8 of the CLP-4 text, that

ş

R G ¨ dr = 2π.
To finish off the counterexample, we’ll now show that

ş

U G ¨ dr = ´2π. LetR2 be
the region between U and R. It is the shaded region in the figure on the right above.
Note that∇∇∇ˆG = 0 on all ofR2. including at P. The boundary ofR2 is ´U ´ R,
meaning that the boundary consists of two parts, with one part being ´U and the
other part being ´R. So, by Stokes’ theorem

´
ż

U
G ¨ dr´

ż

R
G ¨ dr =

ż

BR2

G ¨ dr =
ĳ

R2

∇∇∇ˆG ¨ k̂ dS = 0

and
ş

U G ¨ dr = ´ ş

R G ¨ dr = ´2π

(5) False. For any conservative vector field F, with potential f ,
ş

V F ¨ dr is just the
difference of the values of f at the two end points of V. It is easy to choose an f for
which those two values are different. For example f (x, y) = x does the job.

(j) Let S be any closed surface and denote by V the volume that it encloses. Presumably

451



the question assumes that S is oriented so that S = BV. Then by the divergence theorem
ĳ

S

F ¨ n̂ dS =

ĳ

BV

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV

This is exactly the volume of V if∇∇∇ ¨ F = 1 everywhere. One vector field F with∇∇∇ ¨ F = 1
everywhere is F = x ı̂ıı.

(k) Let C be the counterclockwise boundary of a small square centred on P, like the blue
curve in the figure below, but much smaller. Call the square (the inside of C) S.

P

C

By Stokes’ theorem
ĳ

S

∇∇∇ˆ F ¨ k̂ dS =

¿

C

F ¨ dr

˝ The contribution to
ű

C F ¨ dr coming from the left and right sides of C will be zero,
because F is perpendicular to dr there.

˝ The contribution to
ű

C F ¨ dr coming from the top of C will be negative, because
there F is a positive number times ı̂ıı and dr is a negative number times ı̂ıı.

˝ The contribution to
ű

C F ¨ dr coming from the bottom of C will be positive, because
there F is a positive number times ı̂ıı and dr is a positive number times ı̂ıı.

˝ The magnitude of the contribution from the top of C will be larger than the
magnitude of the contribution from the bottom of C, because |F| is larger on the top
than on the bottom.

So, all together,
ű

C F ¨ dr ă 0, and consequently (taking a limit as the square size tends to
zero)∇∇∇ˆ F ¨ k̂ is negative at P.

S-5: (a) False. We could have, for example,∇∇∇ ¨ F zero at one point and strictly positive
elsewhere. One example would be F = x3 ı̂ıı + y3 ̂ + z3 k̂, with S1 and S2 being the upward
oriented top and bottom hemispheres, respectively, of the unit sphere x2 + y2 + z2 = 1.

(b) False. The conditions that (1)∇∇∇ˆ F = 0 and (2) the domain of F is simply-connected,
are sufficient, but not necessary, to imply that F is conservative. For example the vector
field F = 0, with any domain at all, is conservative with potential 0. Another example
(which does not depend on choosing a domain that is smaller than the largest possible
domain) is F =∇∇∇ 1

x2+y2 with domain
 

(x, y, z)
ˇ

ˇ (x, y) ‰ (0, 0)
(

. That is, the domain is R3

with the z-axis removed.
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(c) That’s true. Consider any point r(t0) on a parametrized curve r(t). That’s the blue
point in the figure below. The centre of curvature for the curve at r(t0) is

r(t0)

c

N̂

T̂

c = r(t0) + ρ(t0)N̂(t0). It is the red dot in the figure.

˝ The radius of the osculating circle is the distance from its centre, c, to any point of
the circle, like r(t0). That’s |r(t0)´ c| = |ρ(t0)N̂(t0)| = ρ(t0). The curvature of the
osculating circle is one over its radius. So its curvature is 1

ρ(t0)
= κ(t0).

˝ The unit normal to the osculating circle at r(t0) is a unit vector in the opposite
direction to the radius vector from the centre c to r(t0). The radius vector is
r(t0)´ c0 = ´ρ(t0)N̂(t0), so the unit normal is N̂(t0).

˝ The osculating circle lies in the plane that best fits the curve near r(t0). (See the
beginning of §1.4 in the CLP-4 text.) So the unit tangents to the osculating circle at
r(t0) are perpendicular to both N̂(t0) and B̂(t0) and so are either T̂(t0) or ´T̂(t0),
depending on how we orient the osculating circle.

(d) False. Kepler’s third law is that a planet orbiting a sun has the square of the period
proportional to the cube of the major axis of the orbit.

(e) True. That’s part (a) of Theorem 4.1.7 in the CLP-4 text.

(f) True. Every domain contains closed surfaces. This has nothing to do with vector fields.

(g) True. We saw this in Example 2.3.4 in the CLP-4 text.

(h) False. Let F be an everywhere defined conservative vector field with potential ϕ.
Then∇∇∇ˆ F = 0 everywhere. If P and Q are two points and if ϕ(P)´ ϕ(Q) = 3 and if C
is a curve from Q to P, then

ş

C F ¨ dr = 3. One example would be ϕ(x, y, z) = x, F = ı̂ıı,
P = (3, 0, 0), Q = (0, 0, 0).

(i) False. The normal component of acceleration depends on speed, as well as curvature.

(j) False. The curve r1 contains only points in the xy-plane. Every r2(t) with t ‰ 0 has a
nonzero z-coordinate.

S-6: (a) False. Changing the orientation of a surface does not change dS at all. (It changes
n̂dS by a factor of (´1).) So

ĳ

S

f dS = +

ĳ

´S

f dS

which is not ´ť

´S f dS, unless the integral is zero.

(b) False. For every vector field with two continuous partial derivatives,∇∇∇ ¨ (∇∇∇ˆ F) = 0

453



(see Theorem 4.1.7.a in the CLP-4 text), so the divergence theorem gives
ĳ

S

(∇∇∇ˆ F) ¨ n̂ dS =

¡

V

∇∇∇ ¨ (∇∇∇ˆ F)dV = 0

whether or not F is conservative.

(c) True. Define the vector field F = f ı̂ıı. Then, by Stokes’ theorem,
ż

C
f dx =

ż

C
F ¨ dr =

ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

ĳ

S

(B f
Bz

̂´ B f
By

k̂
)
¨ n̂ dS

(d) True. The left hand side, (∇∇∇ f )ˆ (∇∇∇ f ), is zero because (∇∇∇ f ) is parallel to itself and
the right hand side∇∇∇ˆ (∇∇∇ f ) is zero by Theorem 4.1.7.b (the screening test for
conservative fields) of the CLP-4 text.

(e) True. The curve r(t) =
(
2 , 0 , 1

)
+ t3(4 , ´1 , ´2

)
is a straight line. Straight lines have

curvature 0.

(f) True. In general |r1(t)| = ds
dt . Under arc length parametrization t = s so that ds

dt = 1.

(g) True. If F is a constant vector fleld, then, by the divergence thoerem,
ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV =

¡

V

0 dV = 0

(h) False. The statement∇∇∇ˆ F = (x, y, z) means that F is a vector potential for the vector
field G = (x, y, z). But G fails the screening test∇∇∇ ¨G = 0 for vector potentials.

S-7: (a) P is the x-component of F. As we travel vertically upward through A, that
x-component decreases. Hence Py ă 0 at A.

(b) Q is the y-component of F. As we travel horizontally to the right through A, that
y-component increases. Hence Qx ą 0 at A.

(c)∇∇∇ˆ F = (Qx ´ Py)k̂ and Qx ´ Py ą 0 at A, so that the curl of F at A is in the direction
of +k̂.

(d) Along the curve C1 the magnitude of the angle between F and dr is less than 90˝, so
that F ¨ dr ą 0 and

ş

C1
F ¨ dr ą 0.

(e) Along the curve C2 the magnitude of the angle between F and dr is greater than 90˝,
so that F ¨ dr ă 0 and

ş

C2
F ¨ dr ă 0.

(f) If F were conservative, we would have
ş

C1
F ¨ dr =

ş

C2
F ¨ dr. As these two integrals

have opposite signs F is not conservative. (Since F is not conservative, it is not the
gradient of some function. At A, Px ą 0 and Qy ą 0. So F is not divergence free and is not
the curl of a vector potential.)
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S-8: (a) False. The curve r1 contains only points with z ě 0. Every r2(t) with t ă 0 has
z ă 0.

(b) True. r2(t2) = r1(t) and t2 runs from 0 to 1 as t runs from 0 to 1.

(c) True. In general |r1(t)| = ds
dt . When t = s, ds

dt = 1.

(d) False. The curve need not even lie in a plane. For example, as we saw in Example
1.4.4 of the CLP-4 text, the helix r(t) = a cos t ı̂ıı + b sin t ̂ + bt k̂ has constant curvature
κ = a

a2+b2 but is not a circle.

(e) True. If the speed |v| = ?
v ¨ v of a moving object is constant, then

0 =
d
dt
(
v ¨ v) = 2v ¨ a

(f) False. If the vector field F(x, y, z) = ´y
x2+y2 ı̂ıı + x

x2+y2 ̂ + zk̂ were conservative, its

restriction, ´y
x2+y2 ı̂ıı + x

x2+y2 ̂, to the xy-plane would also be conservative. But we saw in

Examples 2.3.14 and 4.3.8 of the CLP-4 text that the vector field ´y
x2+y2 ı̂ıı + x

x2+y2 ̂ is not
conservative.

(g) False. The vector field of part (f), with domain
 

(x, y, z)
ˇ

ˇ x2 + y2 ą 1
(

, provides a
counterexample.

(h) False. The curve x2 + y2 = 2 can not be shrunk to a point continuously in
 

(x, y)
ˇ

ˇ x2 + y2 ą 1
(

.

(i) True. Any curve in
 

(x, y)
ˇ

ˇ y ą x2 ( can be shrunk to a point continuously in
 

(x, y)
ˇ

ˇ y ą x2 (.

(j) True. By the divergence theorem,
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¡

E

∇∇∇ ¨ (∇∇∇ˆ F)dV = 0

since∇∇∇ ¨ (∇∇∇ˆ F) = 0 by the vector identity of Theorem 4.1.7.a in the CLP-4 text.

S-9:

(a) True. In general |r1(t)| = ds
dt . When t = s, ds

dt = 1.

(b) False. The curve need not even lie in a plane. For example, as we saw in Example
1.4.4 of the CLP-4 text, the helix r(t) = a cos t ı̂ıı + b sin t ̂ + bt k̂ has constant curvature
κ = a

a2+b2 but is not a circle.

(c) True. See Theorem 2.4.6 of the CLP-4 text.

(d) False. The vector field F(x, y, z) = ´y
x2+y2 ı̂ıı + x

x2+y2 ̂, with domain

 

(x, y, z)
ˇ

ˇ x2 + y2 ą 1
(

provides a counterexample.
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(e) False. The curve r1 contains only points with z ě 0. Every r2(t) with t ă 0 has z ă 0.

(f) True. r2(t2) = r1(t) and t2 runs from 0 to 1 as t runs from 0 to 1.

(g) True. ∇∇∇ ¨ (∇∇∇ˆ F) = 0 by the vector identity of Theorem 4.1.7.a in the CLP-4 text.

(h) False. A counterexample is f (x, y, z) = x2. It has∇∇∇ f = 2x ı̂ıı and hence∇∇∇ ¨ (∇∇∇ f ) = 2.

(i) False. The curve x2 + y2 = 2 can not be shrunk to a point continuously in
 

(x, y)
ˇ

ˇ x2 + y2 ą 1
(

.

(j) True. Any curve in
 

(x, y)
ˇ

ˇ y ą x2 ( can be shrunk to a point continuously in
 

(x, y)
ˇ

ˇ y ą x2 (.

S-10: (a) False. ∇∇∇ f = 0 if and only if f is constant. But if f is the constant K, then
ş

C f ds
is K times the length of C, which need not be zero.

(b) False. Any curve which lies in a plane has constant binormal. For example, the circle
r(t) = cos t ı̂ıı + sin t ̂ + 0 k̂ has constant binormal B̂ = k̂, but is not a straight line.

(c) True. If r(t) has constant speed, the
(ds

dt (t)
)2

= r1(t) ¨ r1(t) is constant and

0 =
d
dt
(
r1(t) ¨ r1(t)) = 2r1(t) ¨ r2(t)

(d) False. For the line integral
ş

C
(
FˆG

) ¨ dr to be independent of the path C, the vector
field FˆG has to be conservative and so has to obey∇∇∇ˆ (FˆG) = 0. But

˝ Not all vector fields are conservative. For example, the vector field H = x ̂ obeys
∇∇∇ˆH = k̂ and so is not conservative.

˝ We can make FˆG be any vector field through judicious choices of F and G. For
example, if F = x k̂ and G = ı̂ıı, then FˆG = x k̂ˆ ı̂ıı = x ̂ = H.

(e) True. The contribution to
ş

C f ds from an “infinitesmal piece of C” is the value of f on
the piece times the length of the piece. That does not depend on the orientation of the
piece.

(f) False. The two vectors in the cross product Br
Bu ˆ Br

Bu are identical. So the cross product
is 0.

(g) False. The integral is completely independent of x(u, v) and y(u, v). In particular if,
for example, x(u, v) = 157u, y(u, v) = 157v, z(u, v) = 0 then
ť

D

(
1 +

(
Bz
Bu
)2

+
(
Bz
Bv
)2
)1/2

dudv is always exactly the area of D, while the area of S is

1572 times the area of D.

(h) True. If the fluid is incompressible then its flow preserves volumes and consequently
∇∇∇ ¨ F = 0.

(i) Not only False, but Ridiculous. The left had side is scalar valued while the right hand
side is vector valued.
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S-11: (a) True. That∇∇∇ ¨ (∇∇∇ˆ F) = 0 is the vector identity of Theorem 4.1.7.a. That
identity is the basis of the vector potential screening test.

(b) False. If F is not conservative, then
ş

C F ¨ dr will depend on the endpoints of C.

(c) True. If∇∇∇ f = 0, then

B f
Bx

(x, y, z) = 0 ùñ f (x, y, z) = g(y, z)

B f
By

(x, y, z) = 0 ùñ Bg
By

(y, z) = 0 ùñ g(y, z) = h(z)

B f
Bz

(x, y, z) = 0 ùñ h1(z) = 0 ùñ h(z) = C

for some functions g(y, z), h(z) and constant C.

(d) False. The curl∇∇∇ˆ F is zero for every conservative vector fields F. There are many
nonconstant conservative vector fields, like F(x, y, z) = x ı̂ıı.

(e) True. As S is closed, it is the boundary of a solid region V. Then, by the divergence
theorem,

ĳ

S

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV = 0

(f) True. If
ş

C F ¨ dr = 0 for every closed curve C, then F is conservative by Theorem 2.4.6
in the CLP-4 text. Consequently,∇∇∇ˆ F = 0 by Theorem 2.3.9.

(g) True. If the speed |v| is constant then

0 =
d
dt
|v|2 =

d
dt

(v ¨ v) = 2v ¨ a
Since T̂ = v

|v| , T̂ ¨ a = 0 too. Here, we have assumed that the constant |v| is not zero. If the
constant |v| is zero, then T̂ is not defined at all (and a = 0).

(h) False. The trap here is that the curve is in R3, not R2. As we saw in Example 1.4.4 of
the CLP-4 text, a helix has constant curvature, but does not lie in a plane and so is not
part of a circle.

(i) False. The trap here is that we are told nothing about∇∇∇ ¨ F. As an example, let S1 be
the hemisphere

S1 =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 = 1, z ě 0
(

with upward pointing normal and S2 be the disk

S2 =
 

(x, y, 0)
ˇ

ˇ x2 + y2 ď 1
(

also with upward pointing normal.

V S1

S2

n̂

n̂
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Set

V =
 

(x, y, z)
ˇ

ˇ 0 ď z ď
b

x2 + y2, x2 + y2 ď 1
(

Then the boundary, BV, of V consists of two parts, namely S1 (with normal pointing
upwards) and S2 (but with normal pointing downwards). The divergence theorem
(Theorem 4.2.2 of the CLP-4 text) gives

ĳ

S1

F ¨ n̂ dS´
ĳ

S2

F ¨ n̂ dS =

¡

V

∇∇∇ ¨ F dV

If∇∇∇ ¨ F ą 0 (as is the case, for example, if F = x ı̂ıı) then
ť

S1
F ¨ n̂ dS´ť

S2
F ¨ n̂ dS is

definitely nonzero.

(j) True. This is one of Kepler’s laws. See §1.9 in the CLP-4 text.

S-12: It’s (b). (a) is gibberish — the left hand side is a scalar while the right hand side is a
vector. (c) is also gibberish — the left hand side is a vector while the right hand side is a
scalar. (b) is the vector identity of Theorem 4.1.4.c in the CLP-4 text.

S-13: (a) False. For example, if f (x, y, z) = x2, then∇∇∇ f = 2x ı̂ıı and∇∇∇ ¨∇∇∇ f = 2.

(b) Not only false, but ridiculous. The left hand side is a vector while the right hand side
is a scalar.

(c) Not only false, but ridiculous. The right hand side is a vector while the left hand side
is a scalar.

(d) True. That’s the screening test for conservative fields, Theorem 4.1.7.b in the CLP-4
text.

(e) Not only false, but ridiculous. The curl of a scalar function is not defined.

(f) True. That’s the screening test for vector potentials, Theorem 4.1.7.a in the CLP-4 text.

(g) False.

∇∇∇ ¨ r
|r|2 =

B
Bx

x
x2 + y2 + z2 +

B
By

y
x2 + y2 + z2 +

B
Bz

z
x2 + y2 + z2

=
1

x2 + y2 + z2 ´
2x2

[x2 + y2 + z2]2
+

1
x2 + y2 + z2 ´

2y2

[x2 + y2 + z2]2

+
1

x2 + y2 + z2 ´
2z2

[x2 + y2 + z2]2

=
3[x2 + y2 + z2]´ 2x2 ´ 2y2 ´ 2z2

[x2 + y2 + z2]2

=
1

x2 + y2 + z2
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(h) False. For any constant vector ωωω = (ω1, ω2, ω3),

ωωωˆ r = det




ı̂ıı ̂ k̂
ω1 ω2 ω3
x y z


 = (ω2z´ω3y)ı̂ıı´ (ω1z´ω3x)̂ + (ω1y´ω2x)̂

So

∇∇∇ˆ (ωωωˆ r) = det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

ω2z´ω3y ´ω1z + ω3x ω1y´ω2x


 = 2ω1ı̂ıı + 2ω2 ̂ + 2ω3k̂

is nonzero, unless the constant vector ωωω = 0.

(i) True. The given equation is equivalent (by the vector identity Theorem 4.1.4.c in the
CLP-4 text) to

¡

Ω

∇∇∇ ¨ ( f F
)

dV =

ĳ

BΩ

f F ¨ n̂ dS

which is true by the divergence theorem.

(j) False. One of the variants of the divergence theorem given in Theorem 4.2.9 of the
CLP-4 text is

ĳ

BΩ

f n̂ dS =

¡

Ω

∇∇∇ f dV

Note that the sign on the right hand side is “+”, not “´”. In order for the equation given
in part (j) to be true, it would be necessary that

ţ

Ω∇∇∇ f dV = 0 for all smooth scalar
functions f . That’s silly. One counterexample is

f (x) = x Ω =
 

(x, y, z)
ˇ

ˇ x2 + y2 + z2 ď 1
(

Then

ĳ

BΩ

f n̂ dS =

ĳ

BΩ

x(

n̂
hkkkkkkkikkkkkkkj

x ı̂ıı + y ̂ + z k̂)dS = ı̂ıı
ĳ

BΩ

x2 dS

´
¡

Ω

∇∇∇ f dV = ´
¡

Ω

ı̂ıı dV = ´ı̂ıı
¡

Ω

dV

The coefficient of ı̂ıı is obviously strictly positive in the upper integral and strictly negative
in the lower integral.

S-14: (a) True. If the vector field is F = a ı̂ıı + b ̂ + c k̂, then f (x, y, z) = ax + by + cz obeys
F =∇∇∇ f and so is a potential for F.

(b) False. For example the vector field F = x ı̂ıı´ y ̂ obeys∇∇∇ ¨ F = 0 but is not a constant
vector field.
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(c) True, assuming that r(t) is not indentically 0. If r(t) and dr
dt are orthogonal at all points

of the curve C, then
d
dt
(
r(t) ¨ r(t)) = 2r(t) ¨ dr

dt
(t) = 0

So x(t)2 + y(t)2 + z(t)2 = r(t) ¨ r(t) is a constant. If r(t) is not indentically 0, that constant
must be strictly positive. That is x(t)2 + y(t)2 + z(t)2 = a2 for some constant a ą 0.

(d) False. The curvature (see §1.5 in the CLP-4 text) is

κ(t) =

ˇ

ˇ

ˇ

dT̂
dt (t)

ˇ

ˇ

ˇ

|r1(t)|
Changing the orientation of the curve amounts to replacing t by ´t. This changes the
signs of T̂ and r1, but does not change κ, because the absolute values eliminate the signs.

(e) False. For example, the vector field F = 0, with domain
 

(x, y, z)
ˇ

ˇ x2 + y2 ą 0
(

is a
conservative vector field (with potential 0) whose domain is not simply connected. As a
less nitpicky example, let F =∇∇∇ f with f = 1

x2+y2 . The biggest possible domain for this

vector field is also
 

(x, y, z)
ˇ

ˇ x2 + y2 ą 0
(

.

S-15: (a) We are to compute the divergence of x2y ı̂ıı + ey sin x ̂ + ezx k̂. Since

B
Bx
(
x2y
)
= 2xy

B
By
(
ey sin x

)
= ey sin x

B
Bz
(
ezx) = xexz

the specified divergence is

∇∇∇ ¨ (x2y ı̂ıı + ey sin x ̂ + ezx k̂
)
= 2xy + ey sin x + xexz

(b) The specified curl is

∇∇∇ˆ ( cos x2 ı̂ıı´ y3z ̂ + xz k̂
)
= det




ı̂ıı ̂ k̂
B
Bx

B
By

B
Bz

cos x2 ´y3z xz


 = y3 ı̂ıı´ z ̂

(c) In principle, the domain could be any subset of
 

(x, y, z)
ˇ

ˇ x2 + y2 ą 0
(

. We are not
told which subset to use, so, by default, D is the maximal domain

D =
 

(x, y, z)
ˇ

ˇ x2 + y2 ą 0
(

=
 

(x, y, z)
ˇ

ˇ (x, y) ‰ (0, 0)
(

This D is connected (any two points in D can be joined by a curve that lies completely in
D) but is not simply connected (the simple closed curve r(θ) = cos θ ı̂ıı + sin θ ̂,
0 ď θ ď 2π lies in D but cannot be shrunk to a point continuously in D). So (I) and (IV)
are true. That’s (iii).
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(d) False. If the position of the particle at time t is r(t) = cos t ı̂ıı + sin t ̂, then its speed is
the constant 1 but its acceleration is ´ cos t ı̂ıı´ sin t ̂, which is nonzero.

S-16: (a) True. By the vector identity of Theorem 4.1.5.c in the CLP-4 text,

∇∇∇ˆ ( f∇∇∇ f ) = (∇∇∇ f )ˆ (∇∇∇ f ) + f ∇∇∇ˆ (∇∇∇ f ) = 0

The second term vanished because of the screening test vector identity of Theorem
4.1.7.b in the CLP-4 text.

(b) True. That’s the vector identity of Theorem 4.1.4.c in the CLP-4 text.

(c) True. To have constant curvature 0 the curve must have unit tangent vector T̂(s)
obeying

dT̂
ds

(s) = 0

(See §1.5 in the CLP-4 text.) So r1(s) = T̂(s) must be a constant vector. Call it T̂0.
Integrating gives

r(s) = sT̂0 + r0

for some constant vector r0. So r(s) lies on the same straight line for all s.

(d) False. The trap here is that the curve is in R3, not R2. As we saw in Example 1.4.4 of
the CLP-4 text, a helix has constant curvature, but does not lie in a plane and so is not
part of a circle.

(e) True. The vector field F =∇∇∇ f is conservative. So, by Theorem 2.4.6.b in the CLP-4
text, the work integral

ż

C
∇∇∇ f ¨ dr =

ż

C
F ¨ dr = 0

for any closed curve C, and, in particular, for any circle C.

(f) True. The statement that “the flux out of one hemisphere is equal to the flux into the
opposite hemisphere” is equivalent to the statement that “the flux out of the sphere is
equal to zero”. Since∇∇∇ ¨ F = 0 everywhere, that is true by the divergence theorem.

(g) True. Let S be the boundary of the solid region V. Then, by the divergence theorem
(Theorem 4.2.9 of the CLP-4 text),

ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¡

V

∇∇∇ ¨ (∇∇∇ˆ F
)

dV

But∇∇∇ ¨ (∇∇∇ˆ F
)

is identically zero, by the screening test vector identity of Theorem
4.1.7.a in the CLP-4 text. So the integral is zero.

S-17: (a) True. Let F be the vector field. We are assuming that∇ˆ F = 0 on all of R3. As a
result, F = ∇φ for some potential function φ. We are also assuming that
0 = ∇ ¨ F = ∇ ¨∇φ =

(
B2

Bx2 +
B2

By2 +
B2

Bz2

)
φ. This is the definition of “φ is harmonic”.
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(b) False. Let F be the vector field. We are assuming that F = ∇φ for some potential
function φ. If S is any smooth closed surface, with S being the boundary of the solid V,
then, by the divergence theorem, the outward flux of F through S is

ĳ

S

F ¨ n̂ dS =

¡

V

∇ ¨ F dV =

¡

V

∇ ¨∇φ dV =

¡

V

(
B2

Bx2 +
B2

By2 +
B2

Bz2

)
φ dV

If, for example, φ = x2, then
(
B2

Bx2 +
B2

By2 +
B2

Bz2

)
φ = 2 and the flux of F through S is twice

the volume of V, which is not zero.

S-18: (a) True. The vector field∇∇∇ f is conservative and the work done by a conservative
field around any closed curve is zero.

(b) False. By the vector identity Theorem 4.1.7.a in the CLP-4 text, we have

∇∇∇ ¨ (∇∇∇ˆ F) = 0

for all vector fields F. But∇∇∇ ¨ (x ı̂ıı + y ̂ + z k̂) = 3.

S-19: (a)
ş

C∇∇∇ f ¨ dr = 0 is the work done along the curve using the conservative force∇∇∇ f .
That work is difference between the potential f at the final point minus the potential f at
the initial point. If the final and initial points are both on the level surface f (x, y, z) = 0,
that difference is zero.

(b) The rate of change of the specified vector is

d
dt

v(t)ˆ r(t) = v1(t)ˆ r(t) + v(t)ˆ v(t)

The first term vanishes because v1(t) = a(t) = f (t)r(t) is parallel to r(t). The second
term vanishes because v(t) = v(t).

(c) Call the constant vector vˆ r of part (b) N. This vector is a constant and is
perpendicular to both v(t) and r(t). In particular

N ¨ r(t) = 0

Assuming that N is nonzero, this is the equation of the plane through the origin with
normal vector N.

(d) Yes, as long as T̂, N̂, and B̂ are well-defined, since B̂ = T̂ˆ N̂.

(e) No. When the maximum speed occurs d2s
dt2 = 0 so that a = κ(t)

(ds
dt (t)

)2 N̂(t). If the
speed and (constant) curvature are nonzero, the acceleration is nonzero.

S-20: We apply Green’s Theorem:
ż

C
F1 dx + F2 dy =

ĳ

R

(BF2

Bx
´ BF1

By

)
dxdy
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(a)
1
2

ż

C
´y dx + x dy =

1
2

ĳ

R

 

1´ (´1)
(

dx dy = Area(R)

(b)
1
2

ż

C
´x dx + y dy =

1
2

ĳ

R

0 dx dy = 0 ‰ Area(R)

(c)
ż

C
y dx =

ĳ

R

 ´ 1
(

dx dy = ´Area(R) ‰ Area(R)

(d)
ż

C
3y dx + 4x dy =

ĳ

R

 

4´ 3
(

dx dy = Area(R)

S-21: (a) True . Since v = |v| = 1 is constant, we have

a =
dv
dt

T̂ + v2κN̂ = 0T̂ + κN̂.

Thus 1 = |a| = κ|N̂|, i.e., κ = 1.

(a) (Again.) Since v ¨ v = |v|2 = 1 for all t, differentiation gives v ¨ a = 0, i.e., v K a
always. It follows that |vˆ a| = |v| |a| sin θ = 1 always, because the angle θ here is
always π/2. Thus, for all t,

κ =
|vˆ a|
|v|3 =

1
1
= 1.

(b) True . By the divergence theorem, if V is the solid bounded by S,
ĳ

S

∇∇∇ˆ F ¨ n̂ dS =

¡

V

∇∇∇ ¨ (∇∇∇ˆ F
)

dV = 0

since∇∇∇ ¨ (∇∇∇ˆ F
)
= 0.

(c) False . If F = 0 and G is any nonzero, conservative field, like G = 2xı̂ıı =∇∇∇(x2), then
¿

C

F ¨ dr =
¿

C

G ¨ dr = 0

for every closed curve C.

S-22: (a) Define ΩΩΩ(t) = r(t)ˆ v(t). Then by the product rule,

dΩΩΩ
dt

=
dr
dt
ˆ v + rˆ dv

dt
= vˆ v + rˆ ( f (r, v)r

)
.

= 0 + f (r, v)
(
rˆ r

)
= 0.

It follows that ΩΩΩ is constant.
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(b) By the divergence theorem, whereR is the solid cylinder as described,
ĳ

S

(x ı̂ıı´ y ̂ + z2 k̂) ¨ n̂dS =

¡

R

(
1´ 1 + 2z

)
dV = 2

¡

R

z dV

The solidR clearly has reflection symmetry across the plane z = 2. So the z-coordinate of
the centre of mass ofR, i.e. the average value of z overR, i.e.

z̄ =

ţ

R z dV
ţ

R dV
=

ţ

R z dV
Vol(R)

is 2. Hence
ĳ

S

(x ı̂ıı´ y ̂ + z2 k̂) ¨ n̂dS = 2z̄ Vol(R) = 4 Vol(R)

By basic geometry, Vol(R) = πr2h = πb22. Hence
ĳ

S

(x ı̂ıı´ y ̂ + z2 k̂) ¨ n̂dS = 8πb2

(c) By Stokes’ theorem (Theorem 4.4.1 in the CLP-4 text),
¿

BD

F ¨ dr =
ĳ

D

G ¨ n̂ dS ùñ
ĳ

D

∇∇∇ˆ F ¨ n̂ dS =

ĳ

D

G ¨ n̂ dS

ùñ
ĳ

D

(
∇∇∇ˆ F´G

) ¨ n̂ dS = 0

for all disks D. Because this is true for all disks D, the integrand must be zero. To see this,
let H =∇∇∇ˆ F´G. Suppose that H(x0) ‰ 0. Pick a unit vector n̂ in the direction of
H(x0). Let D be a very small flat disk centered on x0 with normal n̂ (the vector we
picked). Then H(x0) ¨ n̂ ą 0 and, by continuity, H(x) ¨ n̂ ą 0 for all x on D, if we have
picked D small enough. Then

ť

D
(
∇∇∇ˆ F´G

) ¨ n̂ dS ą 0, which is a contradiction. So we
conclude that∇∇∇ˆ F´G = 0 and hence G =∇∇∇ˆ F.

464


	How to use this book
	I The questions
	Curves
	Derivatives, Velocity, Etc.
	Reparametrization
	Curvature
	Curves in Three Dimensions
	Integrating Along a Curve
	Sliding on a Curve
	Polar Coordinates

	Vector Fields
	Definitions and First Examples
	Field Lines
	Conservative Vector Fields
	Line Integals

	Surface Integrals
	Parametrized Surfaces
	Tangent Planes
	Surface Integrals

	Integral Theorems
	Gradient, Divergence and Curl
	The Divergence Theorem
	Green's Theorem
	Stokes' Theorem

	True/False and Other Short Questions

	II Hints to problems
	1.1   Derivatives, Velocity, Etc
	1.2   Reparametrization
	1.3   Curvature
	1.4   Curves in Three Dimensions
	1.6   Integrating Along a Curve
	1.7   Sliding on a Curve
	1.8   Polar Coordinates
	2.1   Definitions and First Examples
	2.2   Field Lines
	2.3   Conservative Vector Fields
	2.4   Line Integals
	3.1   Parametrized Surfaces
	3.2   Tangent Planes
	3.3   Surface Integrals
	4.1   Gradient, Divergence and Curl
	4.2   The Divergence Theorem
	4.3   Green's Theorem
	4.4   Stokes' Theorem
	5   True/False and Other Short Questions


	III Answers to problems
	1.1   Derivatives, Velocity, Etc
	1.2   Reparametrization
	1.3   Curvature
	1.4   Curves in Three Dimensions
	1.6   Integrating Along a Curve
	1.7   Sliding on a Curve
	1.8   Polar Coordinates
	2.1   Definitions and First Examples
	2.2   Field Lines
	2.3   Conservative Vector Fields
	2.4   Line Integals
	3.1   Parametrized Surfaces
	3.2   Tangent Planes
	3.3   Surface Integrals
	4.1   Gradient, Divergence and Curl
	4.2   The Divergence Theorem
	4.3   Green's Theorem
	4.4   Stokes' Theorem
	5   True/False and Other Short Questions


	IV Solutions to problems
	1.1   Derivatives, Velocity, Etc
	1.2   Reparametrization
	1.3   Curvature
	1.4   Curves in Three Dimensions
	1.6   Integrating Along a Curve
	1.7   Sliding on a Curve
	1.8   Polar Coordinates
	2.1   Definitions and First Examples
	2.2   Field Lines
	2.3   Conservative Vector Fields
	2.4   Line Integals
	3.1   Parametrized Surfaces
	3.2   Tangent Planes
	3.3   Surface Integrals
	4.1   Gradient, Divergence and Curl
	4.2   The Divergence Theorem
	4.3   Green's Theorem
	4.4   Stokes' Theorem
	5   True/False and Other Short Questions



